Thin Films & Materials Research Group

Introducation| Members| Education | Facilities | Projects | Publications | Contact Us 

  

 

 

 

 

 

 

Introduction

The Thin Film & Materials Research Group at King Fahd University of Petroleum and Minerals (KFUPM) is focused on studying the growth, properties, and applications of thin solid films. 

The goals of our research are:
  • Advance the understanding and applications of thin films.
  • Collaborate with industry on problems of industrial interest, such as corrosion, materials research, and sensors.
  • Train students in the techniques involved in the fabrication and characterization of thin solid films.
Thin solid films lie at the heart of modern technology. Progress in the synthesis, characterization, and processing of thin films over the past decades has yielded novel electronic, magnetic, optical, polymeric, ceramic, and biological materials with improved properties for their intended applications. Virtually every aspect of present-day life relies on smaller, more reliable, more efficient, and less expensive devices made possible by the development of these films. As such, thin films have found important applications such as microelectronics, protective coatings, solar cells, smart windows, sensors, communications, photosensitive materials, composites, and medicine. These examples underscore the diversity of applications for thin films required by our modern technological society. They also exemplify the multidisciplinary nature of research on thin solid films.
The Thin Films and Materials Research Group at King Fahd University of Petroleum and Minerals was created in 1991 to conduct research on the synthesis, characterization, and applications of advanced thin film materials. The research being conducted focuses on both the fundamental properties and practical applications of thin film materials. 
The group is headed by Professor Mohammad F. Al-Kuhaili.


    Education

    Master Thesis Supervision
    1. Abdul Aziz Al-Aswad: Energy-efficient coatings based on WO3/metal multilayers (2009).
    2. Mahdi Al-Maghrabi: Development of transparent conducting coatings based on ZnO/Al/ZnO multilayers (2009).
    3. Saleem Muhammad: Growth and characterization of thermally evaporated iron oxide thin films (2012).
    4. Ibraheem Alade: Influence of hydrogen annealing on the properties of RF sputtered ZnO thin films (2014).
    5. Syed H. A. Ahmad: Transparent heat mirrors based on transition metal oxides (2016).
    6. Saeed A. Baqraf: Co-sputtered copper-doped zinc oxide thin films (2017).
    7. Mohammad E. Daoud: Sputtered bismuth oxide thin films (2020).

    PhD Thesis Supervision
    1. Abdul Majeed Hindi: Band gap engineering of metal oxides by alloying with cadmium telluride (2016).
    2. Hafiz A. Qayyoum : Band gap determination of metal oxide thin films using electromodulation (2017).
    3.Tanvir Hussain: Angular deposition of II-IV semiconductor thin films (2018).

    Facilities

    Deposition

    Physical Vapor Deposition
    We deposit thin films using physical vapor deposition (PVD). In PVD, the material (in the form of powder or pellets) is evaporated to make a thin film. The material can be evaporated using three techniques:
    • Electron-beam evaporation
    • Thermal evaporation using resistive heating of refractory metallic crucible.
    • Thermal evaporation using a ceramic crucible.
    The choice of any of these three techniques depends on the material to be deposited. The thickness of the film can be controlled using a thickness monitor. The substrates can be rotated and heated up to 350 C.          
    In addition, reactive evaporation (using controlled atmospheres of oxygen, nitrogen, or hydrogen) can be achieved. Moreover, co-evaporation (simultaneous evaporation from more than one source) can be achieved. 
    Sequential multilayer growth is also possible.
    The grown materials include metals, metal oxides, nitrides, sulfides, tellurides, and selenides.
    All PVD processes take place in the fully automated Leybold L-560 box coater.
     
    DC/RF Sputtering

    Sputtering is a versatile technique for the preparation of thin solid films of various classes of materials. In this technique, a solid target is bombarded with ions (plasma) that eject atomic and molecular species of the desired material; and subsequently, these are deposited on the surface of the substrate. Our system can perform direct current (DC) or radio frequency (RF) magnetron sputtering, as well as co-sputtering and reactive sputtering. Additionally, the substrates can be heated to as high as 400 C. Currently, we use an Oerlikon (Leybold) Univex 350 Sputtering system.

    POST-DEPOSITION

    After deposition, the films can be processed (if necessary) using several techniques. One technique is annealing, which refers to heating the films at a certain temperature for a certain duration of time. The annealing can be carried out in air, vacuum, or under a controlled atmosphere (Ar, O2, N2, H2). The films can also be post-processed using a plasma or by laser irradiation.

    CHARACTERIZATION

    Structure
    The structure of the deposited films can be investigated using a variety of techniques. Stylus surface profilometry (KLA Tencor D-500) is used to determine the thicknesses of the films. Atomic force microscopy (AFM: Bruker Innova diSPM) is used to obtain nano-scale imaging of the films to determine the growth mode (granular, columnar), porosity, and surface roughness.  The crystallinity and grain size of the films are investigated by X-ray diffraction (XRD: Bruker D2 Phaser). In addition, scanning electron microscopy (SEM: JEOL JSM 6610LV) can be used to investigate the surfaces of highly conductive films.

    Chemistry
    The chemical properties of the films can be investigated using many methods. The surface chemistry can be probed using X-ray photoelectron spectroscopy (XPS: Thermo Scientific Escalab 250Xi), which provides vital information on the valence states of the elemental constituents of the films. The bulk composition of the films can be determined using energy dispersive spectroscopy (EDS: JEOL JSM 6610LV) or X-ray fluorescence (XRF).

    Optics
    The optical properties of the films can be studied by many techniques. Spectrophotometry (Jasco V-570) is used to measure the transmittance, absorbance, and reflectance of films. The luminescence (light emission) of the films can be investigated using a Shimadzu RF-5301 PC spectrofluorometer. These measurements can also be measured at ultra-low temperatures (5 K) using a Janis cryostat. Dispersive Raman spectroscopy can provide information on the chemical bonding in the films. Spectroscopic ellipsometry is used to determine the optical constants (dielectric function, refractive index, and extinction coefficient) of the films.
     
    Electrical
    Hall-effect measurements can be carried out using an ECOPIA HMS 3000 system to determine the resistivity, mobility, and charge carrier concentration. The current voltage characteristics can be determined using a Keithley 238 source measure unit. High-resistance instruments are also available to measure the electrical properties of insulating thin films.

    MATERIALS INVESTIGATED

    Elements, metals, semiconductors, metal oxides, nitrides, and II-VI compounds    
     

    APPLICATIONS

    • Energy-saving transparent heat mirrors
    • Transparent conductors
    • Photovoltaic (solar) materials
    • Gas-sensors
    • Water treatment
    • Photocatalysis

     

     

    Projects

    • Formulation of zeolitic membranes by pulsed laser deposition, KFUPM-SABIC project, September 1997-November 2002.
    • Some energy saving applications of thin solid films, KFUPM project, September 1999-November 2001.
    • Thin Film Gas Sensors, KFUPM-SABIC project, April 2002-March 2004.
    • Development of a New Method for Determining the Optical Constants (n and k) of Inhomogeneous Thin Films, KFUPM project, April 2005 – March 2006.
    • Development of a Carbon Monoxide Thin Film Gas Sensor Based on CeO2 Thin Films, KFUPM internally funded project, September 2007 – February 2009.
    • Growth of molybdenum oxide (MoO3) thin films using pulsed excimer laser deposition, KFUPM project, February 2009 – August 2010.
    • Synthesis of sputtered iron-doped zinc oxide thin films as transparent conductors for solar energy applications – Phase I, Funded by NSTIP, September 2009 – March 2012.
    • Nanostructuring of surfaces using slow highly charged ions, Funded by NSTIP, March 2012 – March 2014.
    • Growth and characterization of gallium nitride (GaN) films deposited using pulsed excimer laser deposition, KFUPM project, October 2010 – April 2012.
    • Growth and characterization of Ti-doped ZnO: A potential dilute magnetic oxide, KFUPM project, January 2012 – March 2015.
    • Synthesis of sputtered iron-doped zinc oxide thin films as transparent conductors for solar energy applications – Phase II, Funded by NSTIP, March 2014 – February 2016.
    • RF-sputtered vanadium dioxide (VO2) thin films for energy-harvesting applications (Phase I), Funded by the Interdisciplinary Research Center on Advanced Materials IRC-AM, April 2022 – December 2023.


    Publications


    1. E.E. Khawaja, S. M. A. Durrani and A. M. Al-Shukri, “Simple method for determining the optical constants of thin metal films,” Thin Solid Films. Vol. 358 (2000), pp. 166-171.
    2. S. M. A. Durrani, E.E. Khawaja and A. M. Al-Shukri, “Density of thin films of cadmium sulphide by nuclear backscattering,” AJSE. Vol. 25 (2000), pp. 89-94.
    3. S. M. A. Durrani, A. M. Al-Shukri, A. Iob and E. E. Khawaja, “ The optical constants of zinc sulphide films determined from transmittance measurements,” Thin Solid Films. Vol. 379 (2000), pp. 199-202.
    4. A. Coban, E. E. Khawaja and S. M. A. Durrani, “Difference between bulk and thin-film densities of various dielectric oxide and fluoride films studied by NRA depth profiling techniques” NIM-B. Vol. 194 (2002), pp. 171-176.
    5. M. F. Al-Kuhaili, S. M. A. Durrani and E. E. Khawaja, “Effects of preparation conditions and thermocoloration on the optical properties of thin films of molybdenum oxide,” Thin Solid Films. Vol. 408 (2002), pp. 188-193.
    6. M. F. Al-Kuhaili, S. M. A. Durrani, E. E. Khawaja and J. Shirokoff, “Effects of preparation conditions on the optical properties of thin films of tellurium oxide,” Journal of Physics D. Vol. 35 (2002), pp. 910-915.
    7. S. M. A. Durrani, E. E. Khawaja, M. A. Salim, M. F. Al-Kuhaili and A. M. Al-Shukri, “Effect of preparation conditions on the optical and thermochromic properties of thin films of tungsten oxide,” Solar Energy Materials and Solar Cells. Vol. 71 (2002), pp. 313-325.
    8. M. F. Al-Kuhaili, “Optical properties of scandium oxide films prepared by electron beam evaporation,” Thin Solid Films. Vol. 426 (2003), pp. 178-185.
    9. M. F. Al-Kuhaili, R. Glosser, A. E. Wickenden, D. D. Koleske and R. L. Henry, “Electroreflectance of hexagonal gallium nitride at the fundamental and E1 spectral regions,” Applied Physics Letters. Vol. 82 (2003), pp. 1203-1205.
    10. E. E. Khawaja, S. M. A. Durrani and M. F. Al-Kuhaili, “Determination of average refractive index of thin CeO2 films with large inhomogeneities,” Journal of Physics D. Vol. 36 (2003), pp. 545-551.
    11. S. M. A. Durrani, M. F. Al-Kuhaili and E. E. Khawaja, “Characterization of thin films of a-SiOx (1.1<x<2.0) prepared by reactive evaporation of SiO,” Journal of Physics: Condensed Matter. Vol. 15 (2003), pp. 8123-8135.
    12. M. F. Al-Kuhaili, S. M. A. Durrani and E. E. Khawaja, “Optical properties of gallium oxide films deposited by electron beam evaporation,” Applied Physics Letters. Vol. 83 (2003), pp. 4533-4535.
    13. J. Pola , J. Kupcik, S. M. A. Durrani, E. E. Khawaja and H. Masoudi, “ Laser ablative structure modification of polyethylene,” Chemistry of Materials Vol. 15 (2003), pp. 3887-3893.
    14. M. F. Al-Kuhaili, E. E. Khawaja and S. M. A. Durrani, “Characterization of hafnium oxide thin films prepared by electron beam evaporation,” Journal of Physics D. Vol. 37 (2004), pp. 1254-1261.
    15. M. F. Al-Kuhaili, E. E. Khawaja, D. C. Ingram and S. M. A. Durrani, “A study of thin films of V2O5 containing molybdenum from an evaporation boat,” Thin Solid Films. Vol. 460 (2004), pp. 30-35.
    16. S. M. A. Durrani, E. E. Khawaja, A. M. Al-Shukri and M. F. Al-Kuhaili, “Dielectric/Ag/Dielectric coated energy-efficient glass windows for warm climates,” Energy and Buildings. Vol. 36 (2004), pp. 891-898.
    17. M. F. Al- Kuhaili, “Optical properties of hafnium oxide thin films and their application in energy efficient-windows,” Optical Materials. Vol. 27 (2004), pp. 383-387.
    18. S. M. A. Durrani, E. E. Khawaja  and M. F. Al-Kuhaili, “CO-sensing properties of undoped and doped tin oxide thin films prepared by electron beam evaporation,” Talanta. Vol. 65 (2005), pp. 1162-1167.
    19. E. E. Khawaja, M. Al-Daous, S. M. A. Durrani and M. F. Al-Kuhaili, “Chemical inhomogeneity in zinc telluride thin films prepared by thermal evaporation,” Thin Solid Films Vol. 485 (2005), pp. 16-21.
    20. S. M. A. Durrani, E. E. Khawaja, H. Masoudi, B. Zdenek, J. Subrt and J. Pola, “IR laser ablative structural modification of polysulfide,” Journal of Analytical Applied Pyrolysis Vol. 73 (2005), pp. 145-149.
    21. M. F. Al-Kuhaili, “A study of the fluorescent properties of spin-coated sodium salicylate thin films,” Journal of Luminescence Vol. 117 (2006), pp. 209-216.
    22. S. M. A. Durrani, “The influence of electrode metals and its configuration on the sensitivity of tin oxide thin film CO sensor,”  Talanta Vol. 68 (2006), pp. 1732-1735.
    23. S. M. A. Durrani, “Biasing voltage dependence of sensitivity of electron beam evaporated SnO2 thin film CO sensor,” Sensors Vol. 6 (2006), pp. 1153-1160.
    24. M. F. Al-Kuhaili, E. E. Khawaja and S. M. A. Durrani, “ Determination of the optical constants (n and k) of inhomogeneous thin films with linear index profiles,” Applied Optics Vol. 45 (2006), pp. 4591-4597.
    25. M. F. Al-Kuhaili, “Chemical and optical properties of thermally evaporated manganese oxide thin films,’ Journal of Vacuum Science and Technology A Vol. 24 (2006), pp. 1746-1750.
    26. M. F. Al-Kuhaili and S. M. A. Durrani “Optical properties of erbium oxide thin films deposited by electron beam evaporation,” Thin Solid Films Vol. 515 (2007), pp. 2885-2890.
    27. M. F. Al-Kuhaili and S. M. A. Durrani “Optical properties of chromium oxide thin films deposited by electron beam evaporation,” Optical Materials Vol. 29 (2007), pp. 709-713.
    28. M. F. Al-Kuhaili, “Characterization of thin films produced by the thermal evaporation of silver oxide,” Journal of Physics D Vol. 40 (2007), pp. 2847-2853.
    29. M. F. Al-Kuhaili, E. E. Khawja and S. M. A. Durrani, “A method for the determination of the optical constants (n and k) of thin films with large optical inhomogeneities,” Journal of Modern Optics. Vol. 54 (2007), pp. 1453-1465
    30. M. F. Al-Kuhaili and S. M. A. Durrani “Incorporation of oxygen into thermally evaporated germanium and optical characterization of the resulting films,” Journal of Applied Physics. Vol. 102 (2007), Art. No. 053512.
    31. M. F. Al-Kuhaili, “Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu2O)” Vacuum. Vol. 82 (2008), pp. 623-629.
    32. S. M. A. Durrani and M. F. Al-Kuhaili, “Effect of biasing voltages and electrode metals and materials on the sensitivity of electron beam evaporated HfO2 thin film CO sensor” Materials Chemistry and Physics. Vol. 109 (2008), pp. 56-60.
    33. S. M. A. Durrani, M. F. Al-Kuhaili and I. A. Bakhtiari, “Carbon monoxide gas-sensing properties of electron-beam deposited cerium oxide thin films,” Sensors and Actuators B. Vol. 134 (2008), pp. 934-939.
    34. M. F. Al-Kuhaili, S. M. A. Durrani and I. A. Bakhtiari, “Carbon monoxide gas-sensing properties of CeO2-ZnO thin films,” Applied Surface Science. Vol. 255 (2008), pp. 3033-3039.
    35. M. F. Al-Kuhaili, M. A. Al-Maghrabi, S. M. A. Durrani and I. A. Bakhtiari, “Investigation of ZnO/Al/ZnO multilayers as transparent conducting coatings,” Journal of Physics D. Vol. 41 (2008), Art. No. 215302.
    36. M. F. Al-Kuhaili, A. H. Al-Aswad, S. M. A. Durrani and I. A. Bakhtiari, "Transparent heat mirrors based on tungsten oxide-silver multilayer structures," Solar Energy Vol. 83 (2009) pp. 1571-1577
    37. M. A. Al-Maghrabi, M. F. Al-Kuhaili, S. M. A. Durrani and I. A. Bakhtiari," Influence of vacuum annealing on the physical properties of ZnO/Al/ZnO multilayer coatings," Journal of Vacuum Science and Technology A Vol. 27 (2009), pp. 276-281
    38. M. F. Al-Kuhaili, S. M. A. Durrani, and I. A. Bakhtiari, “Pulsed laser deposition of molybdenum oxide thin films,” Applied Physics A – Materials Science & Processing Vol. 98 (2010), pp.609-615.
    39. M. F. Al-Kuhaili, S. M. A. Durrani, I. A. Bakhtiari, and A. M. Al-Shukri, “Optical constants and thermocoloration of pulsed laser deposited molybdenum oxide thin films,” Optics Communications Vol. 283 (2010), pp. 2857-2862.
    40. M. F. Al-Kuhaili, S. M. A. Durrani, and I. A. Bakhtiari, “Carbon monoxide gas-sensing properties of CeO2-WO3 thin films,” Materials Science and Technology Vol. 26 (2010), pp. 726-731.
    41. M. F. Al-Kuhaili, S. M. A. Durrani, I. A. Bakhtiari, M. A. Dastageer, and M. B. Mekki, “Influence of hydrogen annealing on the properties of hafnium oxide thin films,” Materials Chemistry and Physics Vol. 126 (2011), pp. 515-523.
    42. Al-Kuhaili, M. F. and Durrani, S. M. A., “Effect of annealing on pulsed laser deposited zirconium oxide thin films,” Journal of Alloys and Compounds. Vol. 509, No. 39, pp. 9536-9541 (2011).
    43. Al-Kuhaili, M. F., Saleem M. and Durrani, S. M. A., “Optical properties of iron oxide (-Fe2O3) thin films deposited by the reactive evaporation of iron,” Journal of Alloys and Compounds. Vol. 521, pp. 178-182 (2011).
    44. Durrani, S. M. A., Al-Kuhaili, M. F.,  Bakhtiati, I. A. and Haider, M. B.  “Investigation of the carbon monoxide gas sensing characteristics of tin oxide mixed cerium oxide thin films,” Sensors. Vol. 12, No. 3, pp. 2598-2609 (2012).
    45. Saleem, M., Al-Kuhaili, M. F.,  Durrani, S. M. A. and Bakhtiati, I. A. “Characterization of nano-crystalline a-Fe2O3 thin films grown by reactive evaporation and oxidation of iron ,” Physica Scripta. Vol. 85, No. 5, Art. No. 055802 (2012).
    46. M. F. Al-Kuhaili, S. M. A. Durrani, and I. A. Bakhtiati, and M. Saleem, “Optical constants of vacuum annealed radio frequency (RF) magnetron sputtered zinc oxide thin films ,” Optics Communications Vol. 285 (2012), pp. 4405-4412.
    47. M. F. Al-Kuhaili, A. H. Al-Aswad, S. M. A. Durrani, and I. A. Bakhtiati, “Energy-saving transparent heat mirrors based on tungsten oxide-gold WO3/Au/WO3 multilayer structures,” Solar Energy Vol. 86 (2012), pp. 3183-3189.
    48. M. F. Al-Kuhaili, A. Kayani, S. M. A. Durrani, I. A. Bakhtiati, and M. B. Haider, “Band gap engineering of zinc selenide thin films through alloying with cadmium telluride,” ACS Applied Materials and Interfaces Vol. 5 (2013) pp. 5366-5372.
    49. M. B. Haider, M. F. Al-Kuhaili, S. M. A. Durrani, and I. A. Bakhtiati, “Effect of annealing on the optical properties of GaN films grown by pulsed laser deposition,” Journal of Materials Science and Technology Vol. 29 (2013), pp. 752-756.
    50. Al-Kuhaili, M. F., Durrani, S. M. A. and Bakhtiari, I. A., “Influence of oxygen flow rate on the surface chemistry and morphology of radio frequency (RF) magnetron sputtered zinc oxide thin films,” Surface and Interface Analysis. Vol. 45, No. 9, pp. 1353-1357, (2013).
    51. Saleem, M., Al-Kuhaili, M. F. , Durrani, S. M. A. and Bakhtiati, I. A. “Phase dependent growth of superficial nanowalls-like structure on TiO2 thin films in molecular hydrogen (H2) annealing environment ,” International Journal of Hydrogen Energy. Vol. 38, No. 28, pp. 12497-12502 (2013).
    52. Al-Kuhaili, M. F. and Durrani, S. M. A., “Structural and optical properties of dysprosium oxide thin films,” Journal of Alloys and Compounds. Vol. 591, pp. 234-239 (2014).
    53. Al-Kuhaili, M. F., Alade, I. O. and Durrani, S. M. A., “Optical constants of hydrogenated zinc oxide thin films,” Optical Materials Express. Vol. 4, No. 11, pp. 2323-2331, (2014).
    54. Saleem, M., Durrani, S. M. A., Saheb, N., Al-Kuhaili, M. F., and Bakhtiari, I. A. “The effect of annealing on structural and optical properties of -Fe2O3/CdS/-Fe2O3 multilayer heterostructures,” Applied Surface Science. Vol. 320, pp. 653-657, (2014).
    55. Al-Kuhaili, M. F., Ahamad, S. H., Durrani, S. M. A., Faiz, M. M., and Ul-Hamid, A. “Energy-saving spectrally-selective coatings based on MoO3/Ag thin films,” Materials and Design. Vol. 73, pp. 15-19, (2015).
    56. Al-Kuhaili, M. F., Ahamad, S. H., Durrani, S. M. A., Faiz, M. M., and Ul-Hamid, A. “Application of nickel oxide thin films in NiO/Ag multilayer energy-efficient coatings,” Materials Science in Semiconductor Processing. Vol. 39, pp. 84-89 (2015).
    57. Saleem, M., Al-Kuhaili, M. F. , Durrani, S. M. A., Hendi, A., Bakhtiati, I. A., and Ali, S. “Influence of hydrogen annealing on the optoelectronic properties of WO3 thin films,” International Journal of Hydrogen Energy. Vol. 40, No. 36, pp. 12343-12351 (2015).
    58. Al-Kuhaili, M. F., Durrani, S. M. A., El-Said, A. S., and Heller, R. “Influence of iron doping on the structural, chemical, and optoelectronic properties of sputtered zinc oxide thin films,” Journal of Materials Research. Vol. 31, Issue 20, pp. 3230-3239 (2016).
    59. Al-Kuhaili, M. F., Durrani, S. M. A., El-Said, A. S., and Heller, R. “Enhancement of the refractive index of sputtered zinc oxide thin films through doping with Fe2O3,” Journal of Alloys and Compounds. Vol. 690, pp. 453-460 (2017).
    60. Hendi, A. H., Al-Kuhaili, M. F., Durrani, S. M., Faiz, M. M., Ul-Hamid, A., Quraishi, A., Khan, I. “Modulation of the band gap of tungsten oxide thin films through mixing with cadmium telluride towards photovoltaic applications,” Materials Research Bulletin. Vol. 87, pp. 148-154 (2017).
    61. Hendi, A. H., Al-Kuhaili, M. F., Durrani, S. M., Faiz, M. M., Ul-Hamid, A., Quraishi, A., Khan, I. “Tunable visible light absorption of MoO3-CdTe composite thin films,” Thin Solid Films. Vol. 636, pp. 137-143 (2017).
    62. Ahamad, S. H., Al-Kuhaili, M. F., Durrani, S. M. A., Faiz, M. M., and Ul-Hamid, A. “Bi-layered energy efficient coatings as transparent heat mirrors based on vanadium oxide thin films,” Solar Energy Materials and Solar Cells. Vol. 169, pp. 258-263, (2017).
    63. Al-Kuhaili, M. F., Baqraf, S. A., Durrani, S. M. “A Substantial linear red shift in the band gap in heavily copper doped zinc oxide thin films deposited by co-sputtering,” Journal of Materials Science: Materials in  Electronics. Vol. 28, pp. 12956-12961 (2017). 
    64. Hussain, T., Al-Kuhaili, M. F., Durrani, S. M. A., Qurashi, A., and Qayyum, H. A. “Enhancement in the solar light harvesting ability of tungsten oxide thin films by annealing in vacuum and hydrogen,” International Journal of Hydrogen Energy. Vol. 42, pp. 28755-28765 (2017).
    65. Qayyum, H. A., Al-Kuhaili, M. F., and Durrani, S. M.  A., “Investigation of fundamental and high order optical transitions in -Fe2O3 thin films using surface barrier electroreflectance,” Superlattices and Microstructures. Vol. 110, pp. 98-107 (2017).
    66. Qayyum, H. A., Al-Kuhaili, M. F., Durrani, S. M. A., Hussain, T., and Ikram, M., “Blue shift in the optical transitions of ZnO thin film due to an external electric field,” Journal of Physics and Chemistry of Solids. Vol. 112, pp. 94-99 (2018). 
    67. Hussain, T., Al-Kuhaili, M. F., Durrani, S. M. A., and Qayyum, H. A. “Effect of collision during vapor transport between Cd and X (X=Te2, Se2, or S2) molecules on the properties of thermally evaporated CdTe, CdSe, and CdS thin films,” Results in Physics. Vol. 8, pp. 988-1000 (2018). 
    68. Qayyum, H. A., Al-Kuhaili, M. F., Durrani, S. M. A., Hussain, T., Ahmad, S. H., and Ikram, M., “Electromodulation of wide-bandgap semiconductors,” Journal of Alloys and Compounds. Vol. 747, pp. 374-384 (2018).
    69. Hussain, T., Al-Kuhaili, M. F., Durrani, S. M. A., and Qayyum, H. A. “Influence of angle deposition on the properties of ZnTe thin films prepared by thermal evaporation,” Ceramics International. Vol. 44, pp. 10130-10140 (2018). 
    70. Al-Kuhaili, M. F., and Mekki, M. B. “P-type conductivity in hydrogenated radio frequency sputtered tin oxide thin films,” Journal of Alloys and Compounds. Vol. 772, pp. 801-807 (2019). 
    71. Al-Kuhaili, M. F. “Enhancement of plasmonic transmittance of porous gold thin films via gold/metal oxide bi-layers for solar energy-saving applications,” Solar Energy. Vol. 181, pp. 456-463 (2019). 
    72. Al-Kuhaili, M. F., Mekki, M. B., Abdalla, S. A. “Influence of vacuum annealing on the photoresponse of thermally evaporated cadmium telluride thin films,” Thin Solid Films. Vol. 686, Art. No. 137412 (2019). 
    73. Al-Kuhaili, M. F. “Electromodulated transmittance of optical transitions in tungsten oxide,” Journal of Physics and Chemistry of Solids. Vol. 139, Art. No. 109317 (2020). 
    74. Al-Kuhaili, M. F. “Electrical conductivity enhancement of indium tin oxide (ITO) thin films reactively sputtered in a hydrogen plasma,” Journal of Materials Science: Materials in Electronics. Vol. 31(4), pp. 2729-2740 (2020).
    75. Al-Kuhaili, M. F., Daoud, M. E., Mekki, M. B. “Spectrally selective energy-saving coatings based on reactively sputtered bismuth oxide thin films,” Optical Materials Express. Vol. 10 (2), pp. 449-463 (2020). 
    76. Maarouf, M., Haider, M. B., Al-Kuhaili, M. F., Aljaafari, A., Khan, J. Y., “Negative magnetoresistance in iron doped TiN thin films prepared by reactive magnetron sputtering,” Journal of Magnetism and Magnetic Materials. Vol. 514, Art. No. 167235 (2020). 
    77. Al-Kuhaili, M. F. “Co-sputtered tantalum-doped tin oxide thin films for transparent conducting applications,” Materials Chemistry and Physics. Vol. 257, Art No. 123749 (2021). 
    78. Al-Kuhaili, M. F. “Photoelectric properties of highly conductive samarium-doped cadmium telluride thin films for photovoltaic applications,” Solar Energy. Vol. 213, pp. 163-171 (2021). 
    79. Al-Kuhaili, M. F., Mekki, M. B. “Laser induced photocoloration in molybdenum oxide thin films,” Journal of Alloys and Compounds. Vol. 885, Art. No. 161043 (2021). 
    80. Qayyum, H. A., Al-Kuhaili, M. F., Hussain, T., Durrani, S. M.  A., “Recovering the optical transitions in tin oxide thin films at room temperature using electroreflectance,” Superlattices and Microstructures. Vol. 156, 106985 (2021). 
    81. Al-Kuhaili, M. F., Drmosh, Q. A. “Investigating the structural and optoelectronic properties of co-sputtered Fe-doped WO3 thin films and their suitability for photocatalytic applications,” Materials Chemistry and Physics. Vol. 281, Art No. 125897 (2022). 
    82. Alam, K., Haider, M. B., Al-Kuhaili, M. F., Ziq, K. A., Ul Haq, B., “Electronic phase transition in CrN thin films grown by reactive RF magnetron sputtering,” Ceramics International. Vol. 48, pp. 17352-17358 (2022). 
    83. Qayyum, H. A., Al-Kuhaili, M. F., Hussain, T., “Tuning the optical properties of molybdenum oxide using electric field: A theoretical and experimental study,” Journal of Alloys and Compounds. Vol. 921, Art. No. 166063 (2022). 
    84. Al-Kuhaili, M. F. “Transparent-conductive and infrared-shielding WO3/Ag/WO3 multilayer heterostructures,” Solar Energy. Vol. 250, pp. 209-219 (2023). 
    85. Baig, U., Al-Kuhaili, M. F., Dastageer, M. A. “Photo-responsive zinc oxide-coated alumina ceramic membrane with super-wettable and self-cleaning features fabricated by single step RF magnetron sputtering for oily water treatment,” Process Safety and Environmental Protection. Vol. 175, pp. 541-553 (2023). 
    86. Al-Kuhaili, M. F., Qahtan, T. F., Mekki, M. B. “Temperature-dependent electrical resistivity of tungsten oxide thin films,” Journal of Physics and Chemistry of Solids. Vol. 182, Art. No. 111607 (2023).


    Contact Us

     Dr. Mohammad F. Al-Kuhaili

    Office: 6/225
    Phone: 966-1-860-3747
    kuhaili@kfupm.edu.sa

     

     

     

     

     

    Go to the top.