Q1.
In FIGURE 1, the three charges are: $\mathrm{q}_{1}=+5.00 \mu \mathrm{C}, \mathrm{q}_{2}=+4.00 \mu \mathrm{C}$, and $\mathrm{q}_{3}=-6.00 \mu \mathrm{C}$. What is the net electrostatic force on q_{1} due to q_{2} and q_{3} ?

Fig\# 1

А) $-200 \hat{\mathbf{i}}+675 \hat{\mathbf{j}}$ (N)
B) $-540 \hat{\mathbf{i}}+1350 \hat{\mathbf{j}}$ (N)
C) $-120 \hat{\mathbf{i}}+380 \hat{\mathbf{j}}$ (N)
D) $-222 \hat{\mathbf{i}}+750 \hat{\mathbf{j}}$ (N)
E) $-133 \hat{\mathbf{i}}+300 \hat{\mathbf{j}}$ (N)

Ans:

$$
\begin{align*}
& \overrightarrow{\mathrm{F}}_{12}=-\frac{k q_{1} q_{2}}{r_{12}{ }^{2}} \hat{\mathrm{i}} \\
&=-\frac{9 \times 10^{9} \times 5 \times 4 \times 10^{-12}}{9 \times 10^{-4}} \hat{\mathrm{i}}=-200 \hat{\mathrm{i}} \\
& \overrightarrow{\mathrm{~F}}_{13}=+\frac{\mathrm{kq}_{1} q_{3}}{\mathrm{r}_{13}{ }^{2}} \hat{\mathrm{j}} \\
&=+\frac{9 \times 10^{9} \times 5 \times 6 \times 10^{-12}}{4 \times 10^{-4}} \widehat{j}=+675 \widehat{j} \\
& \Rightarrow \overrightarrow{\mathrm{~F}}_{1, \text { net }}=\overrightarrow{\mathrm{F}}_{12}+\overrightarrow{\mathrm{F}}_{13} \\
& \quad=-200 \hat{\mathrm{i}}+675 \hat{\mathrm{j}}(\mathrm{~N}) \tag{N}
\end{align*}
$$

Q2.
Consider three distant spheres with charges $\mathrm{Q}_{1 \mathrm{i}}=1 \mathrm{C}, \mathrm{Q}_{2 \mathrm{i}}=2 \mathrm{C}$, and $\mathrm{Q}_{3 \mathrm{i}}=3 \mathrm{C}$. We allow these three charges to touch each other for a short time and then we separate them. The new charges of these spheres become $\mathrm{Q}_{1 \mathrm{f}}=\mathrm{q}, \mathrm{Q}_{2 \mathrm{f}}=0.5 \mathrm{q}$, and $\mathrm{Q}_{3 \mathrm{f}}=1.5 \mathrm{q}$. Find the value of q .
A) 2 C
B) 1 C
C) 3 C
D) 6 C
E) 4 C

Ans:

$$
\begin{aligned}
& Q_{i}=Q_{1 i}+Q_{2 i}+Q_{3 i}=6 C \\
& Q_{f}=Q_{1 f}+Q_{2 f}+Q_{3 f}=3 q \\
& Q_{i}=Q_{f}: 3 q=6 C \Rightarrow q=2 C
\end{aligned}
$$

Q3.

Particle 1 of charge $Q_{1}=4 Q$ and particle 2 of charge $Q_{2}=9 Q$ are fixed as shown in FIGURE 2. At what distance from Q_{1} along the y-axis will the net electric field due to the two particles be zero?

Fig\#2
A) $2 \mathrm{~L} / 5$
B) $4 \mathrm{~L} / 9$
C) $2 \mathrm{~L} / 3$

D) $3 \mathrm{~L} / 2$
E) $3 \mathrm{~L} / 5$

Ans:

Since both particles are positive, $\overrightarrow{\mathrm{E}}$ will be zero at a point between them.
Let \vec{E} be zero at a point that is a distance d from Q_{1} :
$\mathrm{E}_{1}=\mathrm{E}_{2}: \frac{\mathrm{kQ}_{1}}{\mathrm{~d}^{2}}=\frac{\mathrm{kQ}_{2}}{(\mathrm{~L}-\mathrm{d})^{2}} \Rightarrow\left(\frac{\mathrm{~L}-\mathrm{d}}{\mathrm{d}}\right)^{2}=\frac{\mathrm{Q}_{2}}{\mathrm{Q}_{1}}$
$\frac{\mathrm{L}-\mathrm{d}}{\mathrm{d}}=\sqrt{\frac{\mathrm{Q}_{2}}{\mathrm{Q}_{1}}} \Rightarrow \frac{\mathrm{~L}}{\mathrm{~d}}-1=\frac{3}{2} \Rightarrow \frac{\mathrm{~L}}{\mathrm{~d}}=\frac{5}{2}$
$\therefore \frac{\mathrm{d}}{\mathrm{L}}=\frac{2}{5} \Rightarrow \mathrm{~d}=\frac{2 \mathrm{~L}}{5}$

Q4.
An electron is shot (ejected) at an initial speed of $3.0 \times 10^{4} \mathrm{~m} / \mathrm{s}$ at an angle of 45° relative to the positive x-axis, as shown in FIGURE 3. At time $t=0$, the electron enters a region of uniform electric field $\overrightarrow{\mathbf{E}}=2.0 \times 10^{-6} \hat{\mathbf{j}}$ (N/C). Find the velocity of the electron along y-axis at $t=1.0 \mathrm{~s}$. Ignore gravity.

Fig\# 3

A) $-3.2 \times 10^{5} \hat{\mathbf{j}} \mathrm{~m} / \mathrm{s}$
B) $+3.2 \times 10^{5} \hat{\mathbf{j}} \mathrm{~m} / \mathrm{s}$
C) $-2.5 \times 10^{3} \hat{\mathbf{j}} \mathrm{~m} / \mathrm{s}$
D) $+2.5 \times 10^{3} \hat{\mathbf{j}} \mathrm{~m} / \mathrm{s}$
E) $+3.2 \times 10^{3} \hat{\mathbf{j}} \mathrm{~m} / \mathrm{s}$

Ans:

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{e}}=\mathrm{ma} \Rightarrow \mathrm{qE}=\mathrm{ma} \Rightarrow \mathrm{a}=\frac{\mathrm{qE}}{\mathrm{~m}} \\
& \therefore \mathrm{a}=\frac{1.6 \times 10^{-19} \times 2.0 \times 10^{-6}}{9.11 \times 10^{-31}}=3.5 \times 10^{5} \mathrm{~m} / \mathrm{s}^{2} \\
& \Rightarrow \overrightarrow{\mathrm{a}}=-3.5 \times 10^{5} \widehat{\mathrm{j}}\left(\mathrm{~m} / \mathrm{s}^{2}\right) \\
& \mathrm{V}_{\mathrm{y}}=\mathrm{V}_{\mathrm{oy}}-\mathrm{at} \\
& =\left(3.0 \times 10^{4}\right)-\left(3.5 \times 10^{5} \times 1.0\right)=-3.2 \times 10^{5} \mathrm{~m} / \mathrm{s} \\
& \Rightarrow \overrightarrow{\mathrm{~V}}_{\mathrm{y}}=-3.2 \times 10^{5} \widehat{\mathrm{j} ~ m} / \mathrm{s}
\end{aligned}
$$

Q5.
Consider three different electric dipoles placed in the same uniform electric field \mathbf{E}, as shown in FIGURE 4, where $\theta=60^{\circ}$. Which of these dipoles has (or have) the LOWEST electric potential energy?

Fig \# 4

A) 2
B) 1
C) 3
D) 1 and 3
E) 2 and 3

Ans:
$\mathrm{U}=-\overrightarrow{\mathrm{p}} . \overrightarrow{\mathrm{E}}$
$U_{1}=-\frac{q d}{2} \cdot E \cdot \frac{1}{2}=-\frac{q d E}{4}$
$\mathrm{U}_{2}=-$ qd. $\mathrm{E} \cdot \frac{1}{2}=-\frac{\mathrm{qdE}}{2}$
$\mathrm{U}_{3}=-\mathrm{q} \cdot \frac{\mathrm{d}}{2} \cdot \mathrm{E} \cdot \frac{1}{2}=-\frac{\mathrm{qdE}}{4}$

Q6.
A cube of 2.0 m edge is placed in a uniform field given by $\overrightarrow{\mathbf{E}}=2.0 \hat{\mathbf{i}}+1.0 \hat{\mathbf{j}}$ (N/C). The flux of the electric field through the face (\mathbf{F}) perpendicular to the y-axis (see FIGURE 5) is

Fig\# 5

A) $4.0 \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}$
B) $8.0 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C) $12 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D) $48 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E) zero

Ans:

$$
\begin{aligned}
\phi & =\overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{~A}}=(2.0 \hat{\mathrm{i}}+1.0 \hat{\mathrm{j}}) \cdot(4.0 \hat{\mathrm{j}}) \\
& =4.0 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}
\end{aligned}
$$

Q7.
In FIGURE 6, a charge \mathbf{q} is placed at the common center of two hemispheres \mathbf{A} and \mathbf{B}. The flux of the electric field through hemisphere \mathbf{B} is

A) equal to the flux through hemisphere \mathbf{A}
B) double the flux through hemisphere \mathbf{A}
C) four times the flux through hemisphere \mathbf{A}
D) zero
E) half the flux through hemisphere \mathbf{A}

Ans:

In both surfaces: $q_{\text {enc }}=q$

Q8.
Consider three infinite non-conducting sheets with uniform charge densities ($-\sigma,+2 \sigma,+3 \sigma$), as shown in cross section in FIGURE 7. The electric field between plates A and B is given by

Fig\# 7

- σ	+2 σ	+3\%
-	+	+
-	+	+
-	+	+
-	+	+
-	+	+
-	+	+
-	+	+
A	B	C

A) $\frac{3 \sigma}{\varepsilon_{o}}$ to the left
B) $\frac{6 \sigma}{\varepsilon_{o}}$ to the left
C) $\frac{3 \sigma}{\varepsilon_{o}}$ to the right
D) $\frac{6 \sigma}{\varepsilon_{o}}$ to the right
E) $\frac{\sigma}{\varepsilon_{0}}$ to the right

Ans:
$\mathrm{E}_{\mathrm{A}}=\frac{\sigma}{2 \varepsilon_{0}} \rightarrow$ to the left
$\mathrm{E}_{\mathrm{B}}=\frac{2 \sigma}{2 \varepsilon_{0}} \rightarrow$ to the left
$\mathrm{E}_{\mathrm{C}}=\frac{3 \sigma}{2 \varepsilon_{0}} \rightarrow$ to the left

$$
\begin{aligned}
\therefore \mathrm{E}_{\text {net }} & =\mathrm{E}_{\mathrm{A}}+\mathrm{E}_{\mathrm{B}}+\mathrm{E}_{\mathrm{C}} \\
& =\frac{\sigma+2 \sigma+3 \sigma}{2 \mathrm{E}_{0}}=\frac{3 \sigma}{\varepsilon_{0}} \rightarrow \text { to the left }
\end{aligned}
$$

Q9.

Two infinite wires are charged with uniform and opposite linear charge densities $+\lambda$ and $-\lambda$, where $\lambda=1.00 \mathrm{nC} / \mathrm{m}$, as shown in FIGURE 8. The flux of the electric field through the Gaussian cylindrical surface (S) is

Fig\# 8

A) $+2.26 \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}$
B) $-2.26 \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}$
C) $+113 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D) $-113 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E) zero

Ans:

Only $+\lambda$ contributes to the flux
$\mathrm{q}_{\mathrm{enc}}=\lambda \mathrm{h}=1.00 \times 10^{-9} \times 2.00 \times 10^{-2}=2.00 \times 10^{-11} \mathrm{C}$
$\phi=\frac{\mathrm{q}_{\mathrm{enc}}}{\epsilon_{0}}=\frac{2.00 \times 10^{-11}}{8.85 \times 10^{-12}}=+2.26 \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}$

Q10.

A point charge $\mathrm{q}=-1.0 \times 10^{-10} \mathrm{C}$ is placed at the center of a spherical conducting shell that has a total charge $\mathrm{Q}=5.0 \times 10^{-10} \mathrm{C}$, as shown in FIGURE 9. The outer surface has radius $\mathrm{R}_{2}=10$ cm . The charge density on the external surface is equal to:

A) $+3.2 \mathrm{nC} / \mathrm{m}^{2}$
B) $-3.2 \mathrm{nC} / \mathrm{m}^{2}$
C) $+4.0 \mathrm{nC} / \mathrm{m}^{2}$
D) $+0.80 \mathrm{nC} / \mathrm{m}^{2}$
E) $-0.80 \mathrm{nC} / \mathrm{m}^{2}$

Ans:

$$
\begin{aligned}
& \mathrm{q}_{\text {in }}=-\mathrm{q}=+1.0 \times 10^{-10} C \\
& \mathrm{Q}=\mathrm{q}_{\text {in }}+\mathrm{q}_{\text {out }} \\
& \therefore \mathrm{q}_{\text {out }}=\mathrm{Q}-\mathrm{q}_{\text {in }}=5.0 \times 10^{-10}-1.0 \times 10^{-10} \\
& \quad=+4.0 \times 10^{-10} \mathrm{C} \\
& \sigma_{\text {out }}=\frac{\mathrm{q}_{\text {out }}}{4 \pi \mathrm{R}_{2}{ }^{2}}=+\frac{4.0 \times 10^{-10}}{4 \pi \times 0.01}=+3.2 \times 10^{-9} \mathrm{C} / \mathrm{m}^{2}=+3.2 \mathrm{nC} / \mathrm{m}^{2}
\end{aligned}
$$

Q11.
A uniform electric field of magnitude $325 \mathrm{~V} / \mathrm{m}$ is directed in the negative y direction. The coordinates of point A are $(-0.200,-0.300) \mathrm{m}$, and those of point B are $(0.400,0.500) \mathrm{m}$. Calculate the electric potential difference $V_{B}-V_{A}$.
A) +260 V
B) -260 V
C) -195 V
D) +195 V
E) +325 V

Ans:

$$
\begin{aligned}
& \Delta V=-\overrightarrow{\mathrm{E}} \cdot \Delta \overrightarrow{\mathrm{r}} \\
& \begin{aligned}
V_{B} & -V_{A}=-\overrightarrow{\mathrm{E}} \cdot\left(\overrightarrow{\mathrm{r}}_{B}-\overrightarrow{\mathrm{r}}_{A}\right) \\
& =325 \hat{\jmath} .(0.6 \hat{\imath}+0.8 \hat{\jmath})=+260 \mathrm{~V}
\end{aligned}
\end{aligned}
$$

Q12.

An electron is released from rest at the origin in a uniform electric field that points in the positive x direction and has a magnitude of $850 \mathrm{~N} / \mathrm{C}$. What is the change in the electric potential energy of the electron-field system when the electron moves a distance of 2.5 m ?
A) $-3.4 \times 10^{-16} \mathrm{~J}$
B) $+3.4 \times 10^{-16} \mathrm{~J}$
C) $-1.4 \times 10^{-16} \mathrm{~J}$
D) $+1.4 \times 10^{-16} \mathrm{~J}$
E) $-5.4 \times 10^{-16} \mathrm{~J}$

Ans:

The electron will move opposite to the field
$\Rightarrow \Delta \overrightarrow{\mathrm{r}}=-2.5 \vec{\imath}(\mathrm{~m})$
$\Delta \mathrm{u}=\mathrm{q} \cdot \Delta \mathrm{V}=\mathrm{q}(-\overrightarrow{\mathrm{E}} \cdot \Delta \overrightarrow{\mathrm{r}})=-\mathrm{q} \overrightarrow{\mathrm{E}} \cdot \Delta \overrightarrow{\mathrm{r}}$
$=-\left(-1.6 \times 10^{-19}\right) \cdot(850 \vec{\imath}) \cdot(-2.5 \vec{\imath})$
$=-3.4 \times 10^{-16} \mathrm{~J}$

Q13.

Two point charges ($+\mathbf{q}$ and $\mathbf{- q}$) are placed as shown in FIGURE 10. Consider the points $1,2,3$, and 4 that are shown on the figure. At which point is the net electric potential HIGHEST? Take $V=0$ at infinity.

Fig\#10

A) 4
B) 3
C) 2
D) 1
E) All points have the same potential

Ans:
$V_{1}=V_{2}=0$
Point 4 is closer to the positive charge.
$\Rightarrow V_{4}>V_{3}$

Q14.
Four point charges are placed at the corners of a square, as shown in FIGURE 11. The magnitudes of the charges are equal. What is the electric potential energy of the system?
A) zero
B) $+5.4 \mathrm{kQ}^{2} / \mathrm{d}$

C) $+2.6 \mathrm{kQ}^{2} / \mathrm{d}$
D) $-2.6 \mathrm{kQ}^{2} / \mathrm{d}$
E) $+0.71 \mathrm{kQ}^{2} / \mathrm{d}$

Ans:

$$
\begin{aligned}
\mathrm{U} & =k\left[-\frac{Q^{2}}{d}+\frac{Q^{2}}{r}+\frac{Q^{2}}{d}-\frac{Q^{2}}{d}-\frac{Q^{2}}{r}+\frac{Q^{2}}{d}\right] \\
& =\text { zero }
\end{aligned}
$$

Q15.
In a certain region of space, the electric potential is given by: $V=2.0 \mathrm{xyz}^{2}$, where V is in volts, and x, y, and z are in meters. What is the magnitude of the electric field at the point with position vector ($2.0 \hat{\mathbf{i}}-2.0 \hat{\mathbf{j}}+4.0 \hat{\mathbf{k}}$)?
A) $111 \mathrm{~V} / \mathrm{m}$
B) $90.8 \mathrm{~V} / \mathrm{m}$
C) $16.1 \mathrm{~V} / \mathrm{m}$
D) $743 \mathrm{~V} / \mathrm{m}$
E) $571 \mathrm{~V} / \mathrm{m}$

Ans:
$E_{x}=-\frac{\partial V}{\partial x}=-2 y z^{2} \rightarrow E_{x p}=(-2)(-2)(16)=+64 \frac{V}{m}$
$E_{y}=-\frac{\partial V}{\partial y}=-2 x z^{2} \rightarrow E_{y p}=(-2)(2)(16)=-64 V / m$
$E_{z}=-\frac{\partial V}{\partial z}=-4 x y z \rightarrow E_{z p}=(-4)(2)(2)(4)=-64 \mathrm{~V} / \mathrm{m}$
$\mathrm{E}=\left(\mathrm{Ex}^{2}+\mathrm{Ey}^{2}+\mathrm{Ez}^{2}\right)^{1 / 2}=111 \mathrm{~V} / \mathrm{m}$

Q16.
The electric potential immediately outside a charged conducting sphere is 200 V , and 10 cm farther from the surface of the sphere the potential is 150 V . What is the charge on the sphere?
A) 6.7 nC
B) 0.95 nC
C) 1.3 nC
D) 8.9 nC
E) 5.4 nC

Ans:

$$
\begin{aligned}
& \mathrm{V}_{1}=\frac{\mathrm{kQ}}{\mathrm{R}} \\
& \left.\mathrm{~V}_{2}=\frac{\mathrm{kQ}}{\mathrm{R}+0.1}\right\} \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=\frac{\mathrm{kQ}}{\mathrm{R}+0.1} \cdot \frac{\mathrm{R}}{\mathrm{kQ}}=\frac{\mathrm{R}}{\mathrm{R}+0.1} \\
& 3 \mathrm{R}+0.3=\frac{\mathrm{R}}{\mathrm{R}+0.1} \rightarrow \frac{3}{4}=\frac{\mathrm{R}}{\mathrm{R}+0.1} \\
& \Rightarrow \mathrm{Q}=\frac{\mathrm{V}_{1} \cdot \mathrm{R}}{\mathrm{k}}=\frac{200 \times 0.3}{9 \times 10^{9}}=6.7 \mathrm{nC}
\end{aligned}
$$

Q17.
FIGURE 12 shows a combination of four capacitors $\mathrm{C}_{1}=\mathrm{C}_{3}=8.0 \mu \mathrm{~F}$ and $\mathrm{C}_{2}=\mathrm{C}_{4}=$ $6.0 \mu \mathrm{~F}$ connected to a $12-\mathrm{V}$ battery. Calculate the charge on capacitor C_{1}.

Fig\# 12
A) $36 \mu \mathrm{C}$
B) $18 \mu \mathrm{C}$
C) $12 \mu \mathrm{C}$
D) $24 \mu \mathrm{C}$
E) $30 \mu \mathrm{C}$

Ans:
$\mathrm{C}_{24}=\mathrm{C}_{2}+\mathrm{C}_{4}=12 \mu \mathrm{~F}$
$\frac{1}{\mathrm{C}_{\mathrm{eq}}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{3}}+\frac{1}{\mathrm{C}_{24}}=\frac{1}{8}+\frac{1}{8}+\frac{1}{12}$
$=\frac{3}{24}+\frac{3}{24}+\frac{2}{24}=\frac{8}{24}$
$\Rightarrow C_{\text {eq }}=3.0 \mu \mathrm{~F}$
$Q_{\text {eq }}=C_{\text {eq }} \cdot V=3.0 \times 12=36 \mathrm{~V}$
$=Q_{1}=Q_{3}=Q_{24}$

Q18.
A $20-\mathrm{V}$ battery is connected to a series of \mathbf{N} capacitors, each of capacitance $4.0 \mu \mathrm{~F}$. If the total energy stored in the capacitors is $50 \mu \mathrm{~J}$, what is \mathbf{N} ?
A) 16
B) 12
C) 4
D) 10
E) 8

Ans:
Series identical capacitance: $=\frac{1}{\mathrm{C}_{\mathrm{eq}}}=\frac{1}{\mathrm{C}}+\frac{1}{\mathrm{C}}+\frac{1}{\mathrm{C}}+\ldots=\frac{\mathrm{N}}{\mathrm{C}}$
$\Rightarrow \mathrm{C}_{\mathrm{eq}}=\frac{\mathrm{C}}{\mathrm{N}}$
$\mathrm{U}=\frac{1}{2} \mathrm{C}_{\mathrm{eq}} \mathrm{V}^{2}=\frac{\mathrm{CV}^{2}}{2 \mathrm{~N}} \rightarrow \mathrm{~N}=\frac{\mathrm{CV}^{2}}{2 \mathrm{U}}=\frac{4.0 \times 10^{-6} \times 400}{2 \times 50 \times 10^{-6}}=16$

Q19.
A $2-\mu \mathrm{F}$ and a $1-\mu \mathrm{F}$ capacitor are connected in series and charged by a battery. They store charges P and Q , respectively. When disconnected and charged separately using the same battery, they have charges R and S , respectively. Then:
A) $\mathrm{R}>\mathrm{S}>\mathrm{P}=\mathrm{Q}$
B) P $>$ Q $>R=$ S
C) $\mathrm{R}>$ P $>$ S $=$ Q
D) $\mathrm{R}>$ Q $>\mathrm{S}=\mathrm{P}$
E) $S>R>P=Q$

Ans:
Series: $\mathrm{P}=\mathrm{Q}$
Charge on R is more because $C_{R}>C_{s}$

Q20.
A $2.0-\mathrm{nF}$ parallel plate capacitor is charged using a $12-\mathrm{V}$ battery. The battery is removed and a dielectric of dielectric constant $\kappa=3.5$ is inserted, filling completely the space between the plates of the capacitor. What is the energy stored in the capacitor after inserting the dielectric?
A) $4.1 \times 10^{-8} \mathrm{~J}$
B) $5.0 \times 10^{-5} \mathrm{~J}$
C) $1.4 \times 10^{-7} \mathrm{~J}$
D) $2.4 \times 10^{-8} \mathrm{~J}$
E) $1.0 \times 10^{-6} \mathrm{~J}$

Ans:
$Q_{i}=C_{i} . V_{i}=Q_{f}$
$U_{f}=\frac{Q_{f}{ }^{2}}{2 C_{f}}=\frac{1}{2} C_{i}^{2} V_{i}{ }^{2} \cdot \frac{1}{k C_{i}}=\frac{C_{i} V_{i}^{2}}{2 k}$
$=\frac{2.0 \times 10^{-9} \times 144}{2 \times 3.5}=4.1 \times 10^{-8} \mathrm{~J}$

