Q1.

FIGURE 1 shows three point charges arranged in three different ways. The charges are $+q$, $-q$, and $-q$. Rank the arrangements according to the magnitude of the net electrostatic force that acts on the positive charge, Smallest first.

Fig\#

A) B, A, C
B) $\mathrm{B}, \mathrm{C}, \mathrm{A}$
C) A, C, B
D) $\mathrm{C}, \mathrm{B}, \mathrm{A}$
E) $\mathrm{C}, \mathrm{A}, \mathrm{B}$

Q2.
A charged spherical water droplet of radius 0.018 mm remains stationary in the air. If the electric field of Earth is directed downward and of magnitude 150 N/C. Find the number of electrons making the net charge of the water droplet. [Ignore air friction]
A) 1.0×10^{7}
B) 2.3×10^{7}
C) 2.6×10^{19}
D) 1.6×10^{7}
E) 1.6×10^{19}

Q3.
Two small identical metallic spheres, each of mass $m=0.20 \mathrm{~g}$, are suspended as pendulum by light strings as shown in FIGURE 2. The spheres are given the same electric charge q, and it is found that they come to equilibrium when each string is at angle of $\theta=5^{\circ}$ with the vertical. If each string is of length $L=30.0 \mathrm{~cm}$, Find the magnitude of the charge on each sphere?
[Ignore air friction]
Fig\#
A) 7.2 nC
B) 3.2 nC
C) 4.9 nC
D) 8.4 nC
E) 8.8 nC

Phys102	Second Major-173	Zero Version
Coordinator: Dr. W. Al-Basheer	Monday, July 30, 2018	Page: 2

Q4.

FIGURE 3 shows a point charge of mass 0.185 kg , and net charge $+0.340 \mu \mathrm{C}$, hangs at rest at the end of an insulating cord above a large horizontal sheet of uniform charge distribution charge. If the tension in the cord is measured to be 5.18 N , then calculate the magnitude and direction of the electric field due to the sheet of charge.

Fig\#

Uniform sheet of charge

A) $9.90 \times 10^{6} \mathrm{~N} / \mathrm{C}$ in the downward direction
B) $9.90 \times 10^{6} \mathrm{~N} / \mathrm{C}$ in the upward direction
C) $15.2 \times 10^{6} \mathrm{~N} / \mathrm{C}$ in the downward direction
D) $15.2 \times 10^{6} \mathrm{~N} / \mathrm{C}$ in the upward direction
E) $3.40 \times 10^{6} \mathrm{~N} / \mathrm{C}$ down ward direction

Q5.
Two point particles, with charges of q_{1} and q_{2}, are placed a distance r apart. The electric field is zero at a point P somewhere between the particles on the line segment connecting them. Only one statement is CORRECT.
A) q_{1} and q_{2} must have the same sign but may have different magnitudes
B) Point P must be exactly midway between the particles
C) q_{1} and q_{2} must have the same magnitude and sign
D) q_{1} and q_{2} must have equal magnitudes and opposite signs
E) q_{1} and q_{2} must have opposite signs and may have different magnitudes

Q6.

In FIGURE 4, an electric dipole swings from an initial orientation $i\left(\theta_{\mathrm{i}}=20.0^{\circ}\right)$ to a final orientation $f\left(\theta_{f}=20.0^{\circ}\right)$ in a uniform external electric field of magnitude $3.00 \times 10^{6} \mathrm{~N} / \mathrm{C}$. The electric dipole moment is 1.00×10^{-27} C.m. Find the work done by the electric field on the dipole.

Fig\#

A) $+2.05 \times 10^{-21} \mathrm{~J}$
B) $+3.28 \times 10^{-21} \mathrm{~J}$
C) $+5.56 \times 10^{-21} \mathrm{~J}$
D) $+2.21 \times 10^{-21} \mathrm{~J}$
E) $-5.56 \times 10^{-21} \mathrm{~J}$

Q7.
Three negative point charges ($-5.00 \mu \mathrm{C},-2.00 \mu \mathrm{C}$ and $-5.00 \mu \mathrm{C}$) lie along a line as in
FIGURE 5. Find the electric field this combination of charges produces at point P which lies 6.00 cm from the $-2.00 \mu \mathrm{C}$ charge measured perpendicular to the line connecting the three charges.

Fig\#

A) $-1.04 \times 10^{7} \mathrm{~N} / \mathrm{C} \hat{i}$
B) $-1.69 \times 10^{7} \mathrm{~N} / \mathrm{C} \hat{i}$
C) $-1.59 \times 10^{7} \mathrm{~N} / \mathrm{C} \hat{i}$
D) $+1.04 \times 10^{7} \mathrm{~N} / \mathrm{C} \hat{i}$
E) $+1.69 \times 10^{7} \mathrm{~N} / \mathrm{C} \hat{i}$

Q8.
A point particle with charge $+q$ is at the center of a Gaussian surface in the form of a cube. The electric flux through the top and bottom faces of the cube, respectively.
A) $q / 6 \varepsilon_{0}$ and $q / 6 \varepsilon_{0}$
B) $q / 4 \varepsilon_{0}$ and $q / 6 \varepsilon_{0}$
C) $q / 4 \varepsilon_{0}$ and $q / 4 \varepsilon_{0}$
D) $q / 6 \varepsilon_{0}$ and $q / 4 \varepsilon_{0}$
E) $q / 6 \varepsilon_{0}$ and q / ε_{0}

Q9.

A very long uniform line of charge has charge per unit length $4.80 \mu \mathrm{C} / \mathrm{m}$ and lies along the x-axis. A second long uniform line of charge has charge per unit length $-2.40 \mu \mathrm{C} / \mathrm{m}$ and is parallel to the x-axis at $y=0.400 \mathrm{~m}$. Find the net electric field at point $(0.000,0.600 \mathrm{~m})$.
A) $-7.20 \times 10^{4} \mathrm{~N} / \mathrm{C} \hat{j}$
B) $-3.65 \times 10^{4} \mathrm{~N} / \mathrm{C} \hat{j}$
C) $-5.22 \times 10^{4} \mathrm{~N} / \mathrm{C} \hat{j}$
D) $+5.22 \times 10^{4} \mathrm{~N} / \mathrm{C} \hat{j}$
E) $+3.65 \times 10^{4} \mathrm{~N} / \mathrm{C} \hat{j}$

Q10.
The magnitude of electric field at a distance of 0.145 m from the surface of a solid insulating sphere with radius 0.355 m is $1750 \mathrm{~N} / \mathrm{C}$. Assuming the sphere's charge is uniformly distributed, find the magnitude of the electric field inside the sphere at a distance of 0.200 m from the center.
A) $1.96 \times 10^{3} \mathrm{~N} / \mathrm{C}$
B) $2.55 \times 10^{3} \mathrm{~N} / \mathrm{C}$
C) $1.12 \times 10^{3} \mathrm{~N} / \mathrm{C}$
D) $6.18 \times 10^{3} \mathrm{~N} / \mathrm{C}$
E) 0

Q11.
Two very large, nonconducting plastic sheets, each 10.0 cm thick, carry uniform charge densities $\sigma_{1}=-6.00 \mu \mathrm{C} / \mathrm{m}^{2}, \sigma_{2}=+5.00 \mu \mathrm{C} / \mathrm{m}^{2}, \sigma_{3}=+2.00 \mu \mathrm{C} / \mathrm{m}^{2}$, and $\sigma_{4}=+4.00 \mu \mathrm{C} / \mathrm{m}^{2}$ on their surfaces, as shown in FIGURE 6. Find the electric field at point A locatd 5.00 cm from the left face of the left-hand sheet.

Fig\#

A) $2.82 \times 10^{5} \mathrm{~N} / \mathrm{C}$ to the left
B) $1.37 \times 10^{5} \mathrm{~N} / \mathrm{C}$ to the left
C) $3.11 \times 10^{5} \mathrm{~N} / \mathrm{C}$ to the left
D) $1.37 \times 10^{5} \mathrm{~N} / \mathrm{C}$ to the right
E) $3.11 \times 10^{5} \mathrm{~N} / \mathrm{C}$ to the right

Q12.
A charge of $-3.00 \mu \mathrm{C}$ is fixed in place. From a horizontal distance of 0.0450 m , a particle of mass $7.20 \times 10^{-3} \mathrm{~kg}$ and charge $-8.00 \mu \mathrm{C}$ is fired horizontally with an initial speed of
$65.0 \mathrm{~m} / \mathrm{s}$ directly toward the fixed charge. Find the distance the particle travel before its speed is zero. [Ignore air friction]
A) 0.0342 m
B) 0.0931 m
C) 0.0065 m
D) 0.00931 m
E) 0.0217 m

Q13.
Determine the electric potential energy for the array of three charges FIGURE 7, relative to its value when the charges are infinitely far away and infinitely far apart.

Fig\#

A) -0.747 J
B) -0.544 J
C) -0.891 J
D) -0.911 J
E) -0.501 J

Q14.
When the two capacitors C_{1} and C_{2} are each charged to a 25.0 V , and then disconnected from the battery, they were found to store charges of $100 \mu \mathrm{C}$ and $300 \mu \mathrm{C}$, respectively. The two capacitors are then connected with opposite polarity as shown in FIGURE 8. What then is the potential difference across the capacitors?

Fig\#

A) 12.5 V
B) 25.0 V
C) 57.1 V
D) 30.0 V
E) 50.0 V

Q15.
The electric potential V in a region of space is given by

$$
V(X, Y, Z)=A\left(x^{2}-3 y^{2}+z^{2}\right)
$$

where A is a constant. If the work done by the field when a $1.50 \mu \mathrm{C}$ test charge is moved from the point $(x, y, z)=(0 m, 0 m, 0.250 \mathrm{~m})$ to the origin is $6.00 \times 10^{-5} \mathrm{~J}$, then find the constant A.
A) $640 \mathrm{~V} / \mathrm{m}^{2}$
B) $450 \mathrm{~V} / \mathrm{m}^{2}$
C) $523 \mathrm{~V} / \mathrm{m}^{2}$
D) $357 \mathrm{~V} / \mathrm{m}^{2}$
E) $553 \mathrm{~V} / \mathrm{m}^{2}$

Q16.
A parallel plate capacitor is connected to a battery. The capacitor has a certain energy density. While the battery is still connected to the capacitor, and the distance between the capacitor plates is doubled, the capacitor energy density
A) decreases by a factor of four.
B) increases by a factor of four.
C) increases by a factor of two.
D) decreases by a factor of two.
E) does not change.

Q17.
Each of the four capacitors shown in FIGURE 9 is $500.0 \mu \mathrm{~F}$. If the voltmeter reading is 1000 V , then find the magnitude of the charge on the capacitor plate Cx .

Fig\#

A) 0.5000 C
B) 0.2000 C
C) 20.00 C
D) 50.00 C
E) 100.00 C

Phys102	Second Major-173	Zero Version
Coordinator: Dr. W. Al-Basheer	Monday, July 30, 2018	Page: 7

Q18.
A parallel plate capacitor filled with dielectric material between its plates has a capacitance of 50 pF . If the plate separation is 0.20 mm , find the maximum operating potential difference. (For the dielectric: dielectric constant $=6.0$, dielectric strength $=150 \times 10^{6} \mathrm{~V} / \mathrm{m}$)
A) 30 kV
B) 15 kV
C) 80 kV
D) 50 kV
E) 100 kV

Q19.
A 120 V potential difference is applied to a heater. There are 2.6×10^{19} electrons flowing through any cross section of the heater every second. How much energy is consumed by the heater every minute?
A) $3.0 \times 10^{4} \mathrm{~J}$
B) $1.8 \times 10^{6} \mathrm{~J}$
C) $1.8 \times 10^{4} \mathrm{~J}$
D) $4.9 \times 10^{5} \mathrm{~J}$
E) $2.5 \times 10^{5} \mathrm{~J}$

Q20.
Copper has resistivity ρ_{o} at room temperature. Find the temperature at which copper has resistivity $2 \rho_{\mathrm{o}}$. Assume room temperature is $24.4^{\circ} \mathrm{C}$ and temperature coefficient of resistivity $\alpha_{\mathrm{cu}}=4.30 \times 10^{-3} \mathrm{~K}^{-1}$
A) $257^{\circ} \mathrm{C}$
B) $223^{\circ} \mathrm{C}$
C) $217^{\circ} \mathrm{C}$
D) $298^{\circ} \mathrm{C}$
E) $273{ }^{\circ} \mathrm{C}$

$F=k \frac{q_{1} q_{2}}{r^{2}}$	$\begin{aligned} & C=\frac{q}{V} \\ & C=\kappa C_{a i r} \end{aligned}$
$\overrightarrow{\mathbf{F}}=q \overrightarrow{\mathbf{E}}=m \overrightarrow{\mathbf{a}}$	$C_{a i r}=\frac{\varepsilon_{o} A}{d}$
$U=-\overrightarrow{\mathbf{p}} . \overrightarrow{\mathbf{E}}$	$U=\frac{1}{2} C V^{2}$
$\overrightarrow{\boldsymbol{\tau}}=\overrightarrow{\mathbf{p}} \times \overrightarrow{\mathbf{E}}$	$u=\frac{1}{2} \varepsilon_{o} E^{2}$
$\Phi=\int_{\text {Sufface }} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}$	$I=\frac{d Q}{d t}=J A$
$\Phi_{c}=\oint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{q_{i n}}{\varepsilon_{0}}$	$R=\frac{V}{I}=\rho \frac{L}{A}$
$E=\frac{\sigma}{2 \varepsilon} \quad$ (sheet of charge)	$J=n e v_{d}$
	$J=\sigma E$
$E=\frac{\sigma}{\varepsilon_{o}} \quad$ (conducting surface)	$\rho=\rho_{0}\left[1+\alpha\left(T-T_{0}\right)\right]$
$E=k \frac{q}{r^{2}}$	$P=I V$
$\begin{aligned} & E=k \frac{q}{R^{3}} r \\ & E=\frac{2 k \lambda}{} \end{aligned}$	$\mathrm{v}=\mathrm{v}_{\mathrm{o}}+\mathrm{at}$
	$\begin{aligned} & x-x_{0}=v_{0} t+\frac{1}{2} a t^{2} \\ & v^{2}=v_{0}{ }^{2}+2 a\left(x-x_{0}\right) \end{aligned}$
$\Delta V=V_{B}-V_{A}=-\int^{B} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{S}}=\frac{\Delta U}{a_{0}}$	Volume of a sphere $=\frac{4}{3} \pi r^{3}$
	$\frac{\text { Constants: }}{\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}}$
$V=k \frac{q}{r} \quad, \quad V=\sum_{i=1} \frac{q_{i}}{r_{i}}$	$\mathrm{k}=9.00 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2}$
	$\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2}$
$E_{x}=\frac{\partial V}{\partial x} \quad E_{y}=\frac{\partial V}{\partial y} \quad E_{z}=\frac{\partial V}{\partial z}$	$\mathrm{e}=1.60 \times 10^{-19} \mathrm{C}$
$E_{x}=-\frac{\partial V}{\partial x}, \quad E_{y}=-\frac{\partial V}{\partial y}, \quad E_{z}=-\frac{\partial V}{\partial z}$	$\mathrm{m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}$
	$\mathrm{m}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}$
$U=k \underline{q_{1} q_{2}}$	$c_{\text {w }}=4190 \mathrm{~J} / \mathrm{kg} . \mathrm{K}$
r_{12}	$\mathrm{m}=$ milli $=10^{-3}$
	$\mu=$ micro $=10^{-6}$
$\Delta U=-W$	$\mathrm{n}=$ nano $=10^{-9}$
	$\mathrm{p}=\text { pico }=10^{-12}$
$\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$	$\begin{aligned} & \mathrm{k}=\text { kilo }=10^{3} \\ & \mathrm{M}=\text { mega }=10^{6} \end{aligned}$

