Q1.

Two charges $q_1 = +6.00 \mu C$ and $q_2 = -12.0 \mu C$ are placed at (-2.00 cm, 0) and (4.00 cm, 0), respectively. If a third unknown charge q_3 is to be located such that the net force on it from charges q_1 and q_2 is zero, what must be the coordinates of q_3 ?

- A) (-16.5 cm, 0)
- B) (-14.5 cm, 0)
- C) (2.49 cm, 0)
- D) (0, 0)
- E) (-6.50 cm, 0)

Q2.

Two small metallic spheres A and B carry $+ 1.00 \,\mu\text{C}$ and $-1.00 \,\mu\text{C}$ of charge, respectively, held fixed at a certain distance without touching each other. How many electrons must be transferred from one sphere to the other to reduce the force of attraction between them by a factor of four?

- A) 3.13×10^{12} from B to A
- B) 3.13×10^{12} from A to B
- C) 7.23×10^{12} from B to A
- D) 7.23×10^{12} from A to B
- E) 1.71×10^{11} from B to A

Q3.

The electric field midway between two charges of +3q and -2q is 98.0 N/C and the distance between the charges is 20.0 cm. What is the value of the charge q?

- A) 2.18×10^{-11} C
- B) 4.67×10^{-6} C
- C) 1.09×10^{-10} C
- D) 1.05×10^{-5} C
- E) 5.73×10^{-11} C

O4.

FIGURE 1 shows four situations in which four charged particles are evenly spaced to the left and right of a central point P. The charge values are indicated. Rank the situations according to the magnitude of the net electric field at the central point, GREATEST FIRST.

- A) 2, 4, 3, 1
- B) 4, 3, then 1 and 2 tie
- C) 3 and 4 tie, then 1 and 2 tie
- D) 4, 3, 1, 2

E) 1,4, 3, 2

Q5.

At some instant the velocity components of an electron moving between two parallel plates are $v_x = 1.5 \times 10^5 \, m/s$ and $v_y = 3.0 \times 10^5 \, m/s$. The uniform electric field between the plates is $\vec{E} = (1.2 \, \hat{j}) N/C$. In unit vector notation find the velocity of the electron after 2.0 µs. (ignore the effect of gravity)

A)
$$(1.5 \times 10^5 \hat{i} - 1.2 \times 10^5 \hat{j}) m/s$$

B)
$$(1.5 \times 10^5 \hat{i} + 7.2 \times 10^5 \hat{j}) m/s$$

C)
$$(5.7 \times 10^5 \hat{i} - 1.2 \times 10^5 \hat{j}) m/s$$

D)
$$(1.2 \times 10^5 \hat{i} - 1.2 \times 10^5 \hat{j}) m/s$$

E)
$$(1.5 \times 10^5 \hat{i} + 3.0 \times 10^5 \hat{j}) m/s$$

06.

An electric dipole is placed in a uniform electric field $\vec{E} = (4000\,\hat{i})N/C$. What is the change in dipole's potential energy if the initial and the final electric dipole moments \vec{p}_i and \vec{p}_f respectively, are given by

$$\vec{p}_i = (3.72 \times 10^{-30} \,\hat{i} + 4.96 \times 10^{-30} \,\hat{j}) \, C.m$$

$$\vec{p}_f = (6.20 \times 10^{-30} \hat{i}) C.m$$

A)
$$-9.92 \times 10^{-27} \text{ J}$$

B)
$$+1.45 \times 10^{-27} \text{ J}$$

C)
$$+3.97 \times 10^{-26} \,\mathrm{J}$$

D)
$$+9.92 \times 10^{-27} \,\mathrm{J}$$

E)
$$-3.97 \times 10^{-26} \,\mathrm{J}$$

O7.

Consider a closed triangular box resting within a horizontal electric field of magnitude $E = 7.80 \times 10^4$ N/C, as shown in **FIGURE 2**. Calculate the electric flux through the slanted surface.

Fig#

A)
$$2.34 \times 10^3 \,\text{N.m}^2/\text{C}$$

B)
$$1.17 \times 10^3 \text{ N.m}^2/\text{C}$$

- C) $4.34 \times 10^3 \text{ N.m}^2/\text{C}$
- D) $7.34 \times 10^3 \text{ N.m}^2/\text{C}$
- E) $1.65 \times 10^3 \text{ N.m}^2/\text{C}$

Q8.

A long, straight wire has a linear charge density $\lambda = -7.8$ nC/m. The wire is enclosed by a coaxial, thin-walled non-conducting cylindrical shell of radius 2.0 cm, as shown **FIGURE 3**. Find the surface charge density σ , on the outer surface of the shell that makes the net electric field zero outside the shell.

Fig#

- A) $6.21 \times 10^{-8} \text{ C/m}^2$
- B) $3.82 \times 10^{-8} \text{ C/m}^2$
- C) $1.24 \times 10^{-8} \text{ C/m}^2$
- D) $9.37 \times 10^{-8} \text{ C/m}^2$
- E) $5.31 \times 10^{-8} \text{ C/m}^2$

Q9.

FIGURE 4 shows, in cross section, three infinity large non-conducting sheets with uniform charge densities $\sigma_1 = +3.0 \ \mu\text{C/m}^2$, $\sigma_2 = +5.0 \ \mu\text{C/m}^2$, and $\sigma_3 = -7.0 \ \mu\text{C/m}^2$, and $L = 2.5 \ \text{cm}$. In unit vector notation, what is the net electric field at point P?

Fig#

- A) $(+5.6 \times 10^4 \,\hat{j}) N/C$
- B) $(-6.8 \times 10^5 \,\hat{j}) N/C$
- C) $(-5.6 \times 10^4 \,\hat{j}) N/C$
- D) $(+6.8 \times 10^5 \hat{j}) N/C$
- E) $(-1.1 \times 10^5 \,\hat{j}) N/C$

O10.

A solid conducting sphere of radius a carries a net charge of +2Q. A conducting spherical shell of inner radius b and outer radius c is concentric with the solid sphere and carries a net charge -Q as shown in **FIGURE 5**. Arrange the electric field in four regions labeled 1, 2, 3, and 4, **GREATEST FIRST**.

- A) 2, 4 then 1 and 3 tie
- B) 1, 2, 3, 4
- C) 2, 3, 4, 1
- D) 1, 3, 2, 4
- E) 4 and 2 tie, then 3, 1

Q11.

Work done by the *electric field* in moving a charge q = -4.0 mC from point A to point B is +20 mJ. What is the potential difference between points A and B, i.e. $V_B - V_A = ?$

- A) +5.0 V
- B) -5.0 V
- C) -20 V
- D) +20 V
- E) -4.0 V

Q12.

FIGURE 6 shows four arrangements of charged particles (where q > 0), all located at the same distance from the origin. Rank the situations according to the net electric potential at the origin, **MOST POSITIVE FIRST** (take the potential to be zero at infinity).

Fig#

A) b then a, c, and d all tie

- B) d, a, b, c
- C) a and b tie then c and d tie
- D) d, c, a, b
- E) c, b, a, d

Q13.

The electric potential in xy plane is given by $V = (2.0 \ x^2 - 3.0 \ y^2)$, where V is in volts and x and y are in meters. In unit vector notation, what is the electric field at point $(5.0 \ m, 7.0 \ m)$?

A)
$$(-20\hat{i} + 42\hat{j})V/m$$

B)
$$(+20\hat{i} - 42\hat{j})V/m$$

C)
$$(-50\hat{i} + 95\hat{j})V/m$$

D)
$$\left(-20\hat{i} + 95\hat{j}\right)V/m$$

E)
$$(-30\hat{i} + 42\hat{j})V/m$$

Q14.

Two charges each of $+2.0~\mu C$ are fixed along the x axis at x=-0.40 m and x=+0.40 m, as shown in **FIGURE 7**. A third charge $q=+4.0~\mu C$ is released from rest from y=0.3 m. Find the maximum kinetic energy attained by the third charge after the release. Fig#

- A) 0.29 J
- B) 0.54 J
- C) 0.24 J
- D) 0.73 J
- E) 0.13 J
- O15.

An air filled parallel plate capacitor is charged to a potential difference of 10 V and then disconnected from the battery. Now if you fill the space between the plates with dielectric material of k=2, which of the following statements is correct

- A) The voltage across the capacitor reduces to 5.0 V.
- B) The voltage across the capacitor remains at 10 V.
- C) The capacitance remains the same.
- D) The energy stored by the capacitor remains the same.
- E) The charge stored reduces to half of its initial value.

Phys102 Second Major-171 Zero Version Coordinator: Saleem Rao Saturday, December 02, 2017 Page: 6

Q16.

If $C = 50.0 \mu F$ in **FIGURE 8**, what is the equivalent capacitance between points A and D?

Fig#

- A) 42.3 μF
- B) 325 µF
- C) 59.1 µF
- D) 28.3 µF
- E) 13.7 μF

Q17.

In **FIGURE 9**, the capacitors $C_1 = 2.0 \mu F$ and $C_2 = 4.0 \mu F$. The capacitor C_1 is charged to a potential difference of 10 V and C_2 is initially uncharged. After closing the switch S, find the total energy stored by the two capacitors.

Fig#

- A) $3.3 \times 10^{-5} \text{ J}$
- $\dot{B)} 1.0 \times 10^{-4} \, J$
- C) $3.0 \times 10^{-4} \text{ J}$
- D) $1.5 \times 10^{-5} \text{ J}$
- E) $5.0 \times 10^{-5} \text{ J}$

Q18.

An air filled parallel plate capacitor has capacitance of $C = 20.0 \mu F$. If lower half of the capacitor is filled with dielectric material $\kappa = 10$, as shown in **FIGURE 10**, find the capacitance of the new capacitor.

Fig#

Phys102 Second Major-171 Zero Version Coordinator: Saleem Rao Saturday, December 02, 2017 Page: 7

- A) 110 μF
- B) 9.09 μF
- C) 440 µF
- D) 73.5 μF
- E) 173 μF

Q19.

When 115 V is applied across a 10 m long wire with a 0.30 mm radius, the magnitude of the current density is 1.4×10^8 A/m². Find the resistivity of the wire.

- A) $8.21 \times 10^{-8} \Omega$.m
- B) $9.33 \times 10^{-7} \,\Omega.m$
- C) $5.72 \times 10^{-8} \,\Omega.m$
- D) $2.38 \times 10^{-8} \,\Omega.m$
- E) $4.16 \times 10^{-8} \,\Omega.m$

Q20.

A heater element with potential difference of 400 V across it transfers electrical energy to thermal energy at the rate of 3000 W. At what rate the heater will transfer the energy if it is connected across a potential difference 300 V.

- A) 1.69 kW
- B) 2.25 kW
- C) 3.57 kW
- D) 1.13 kW
- E) 2.92 kW