Phys102	First Major-162	Zero Version
Coordinator: Saleem Rao	Monday, May 01, 2017	Page: 1

Q1. Three point charges are arranged as shown in FIGURE 1. Find the magnitude of the net electrostatic force on the point charge at the origin.

Fig\#

A) $\quad 1.38 \times 10^{-5} \mathrm{~N}$
B) $\quad 3.00 \times 10^{-6} \mathrm{~N}$
C) $\quad 8.15 \times 10^{-5} \mathrm{~N}$
D) $\quad 2.11 \times 10^{-6} \mathrm{~N}$
E) $\quad 7.50 \times 10^{-5} \mathrm{~N}$

Q2. Two small identical neutral metal spheres A and B of radii 2.0 cm have their centers separated by a fixed distance of 8.0 cm . Electrons are then transferred from sphere A to sphere B until the force of attraction between them becomes $36 \times 10^{-5} \mathrm{~N}$. How many electrons have been transferred from sphere A to sphere B?
A) $\quad 1.0 \times 10^{11}$
B) 1.6×10^{8}
C) 1.6×10^{3}
D) $\quad 1.0 \times 10^{13}$
E) $\quad 1.6 \times 10^{7}$

Q3. A spherical conducting shell of outer radius 5.0 cm has a net positive charge Q , then a point charge of $-5.0 \mu \mathrm{C}$ is placed at its center as shown in FIGURE 2. If the net electric field at point $\mathrm{P}, 15 \mathrm{~cm}$ away from the center of the spherical shell is $\vec{E}=2 \times 10^{6} \hat{i} \mathrm{~N} / \mathrm{C}$, find the charge on the outer surface of the spherical shell

Fig\#

Phys102	First Major-162	Zero Version
Coordinator: Saleem Rao	Monday, May 01, 2017	Page: 2

A) $+5.0 \mu \mathrm{C}$
B) $+10 \mu \mathrm{C}$
C) $\quad+15 \mu \mathrm{C}$
D) $\quad-5.0 \mu \mathrm{C}$
E) $\quad-10 \mu \mathrm{C}$

Q4. Three identical point charges each of 1.0 nC are placed along a vertical line as shown in the FIGURE 3. Find the magnitude of the resultant electric field at a point $P, 6.0 \mathrm{~cm}$ in front of middle charge.

Fig\#

A) $\quad 6.8 \times 10^{3} \mathrm{~N} / \mathrm{C}$
B) $8.0 \times 10^{3} \mathrm{~N} / \mathrm{C}$
C) $3.9 \times 10^{3} \mathrm{~N} / \mathrm{C}$
D) $\quad 2.7 \times 10^{3} \mathrm{~N} / \mathrm{C}$
E) $\quad 1.7 \times 10^{4} \mathrm{~N} / \mathrm{C}$

Q5. In FIGURE 4, a 0.300 g metallic ball carrying a charge of $\mathrm{q}=-29.4 \mu \mathrm{C}$, hangs from a light insulating string in a vertical electric field. If the ball is in static equilibrium and the tension in the string is zero find the magnitude and direction the electric field.

Fig\#

A) $\quad 100 \mathrm{~N} / \mathrm{C}$ downward
B) $\quad 2.94 \mathrm{~N} / \mathrm{C}$ upward
C) $\quad 200 \mathrm{~N} / \mathrm{C}$ downward
D) $\quad 100 \mathrm{~N} / \mathrm{C}$ upward
E) $\quad 150 \mathrm{~N} / \mathrm{C}$ upward

Q6. How much work is required to turn an electric dipole 180° in a uniform electric field of magnitude $\mathrm{E}=35.6 \mathrm{~N} / \mathrm{C}$ if the dipole moment has a magnitude of $\mathrm{p}=3.02 \times 10^{-25} \mathrm{C} . \mathrm{m}$ and the initial angle between \vec{P} and \vec{E} is 64° ?
A) $\quad+9.43 \times 10^{-24} \mathrm{~J}$
B) $-1.19 \times 10^{-24} \mathrm{~J}$
C) $\quad-9.43 \times 10^{-24} \mathrm{~J}$
D) $+1.19 \times 10^{-24} \mathrm{~J}$
E) $+19.3 \times 10^{-24} \mathrm{~J}$

Q7. FIGURE 5 shows, in cross section, two Gaussian spheres and two Gaussian cubes. A positive charge +q is placed at the center of inner sphere ' a ' and a charge of -q is placed between the sphere 'c' and the cube ' d '. Rank the net flux Φ through the four Gaussian surfaces, GREATEST FIRST.

Fig\#

A) $\Phi_{\mathrm{a}}, \Phi_{\mathrm{b}}$, and Φ_{c} tie, Φ_{d}
B) $\Phi_{\mathrm{d}}, \Phi_{\mathrm{a}}, \Phi_{\mathrm{b}}, \Phi_{\mathrm{c}}$
C) Φ_{d} than $\Phi_{\mathrm{a}}, \Phi_{\mathrm{b}}$, and Φ_{c} tie
D) $\Phi_{\mathrm{d}}, \Phi_{\mathrm{b}}, \Phi_{\mathrm{c}}, \Phi_{\mathrm{a}}$
E) $\quad \Phi_{\mathrm{d}}$ and Φ_{b} tie, Φ_{a} and Φ_{c} tie

Q8. FIGURE 6 shows, in cross-section, two solid insulating spheres 1 and 2, each of radius R. Positive charges q_{1} and q_{2} are uniformly distributed throughout the volume of sphere 1 and 2 , respectively. Point P lies on a line connecting the centers of the spheres, at radial distance $\mathrm{R} / 3$ from the center of sphere 1 . If the net electric field at point P is zero, what is the ratio $\mathrm{q}_{2} / \mathrm{q}_{1}$?

Fig\#

A) $25 / 27$
B) $9 / 8$
C) $2 / 3$
D) 1
E) $400 / 3$

Q9. An electron is shot directly upward away from a uniformly positively charged plastic sheet as shown in FIGURE 7. The sheet is non-conducting, flat, and very large. If the magnitude of the electron's acceleration is $2.50 \times 10^{16} \mathrm{~m} / \mathrm{s}^{2}$, what is the sheet's surface charge density? (ignore the effect of gravity)

Fig\#

A) $\quad 2.52 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}$
B) $1.26 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}$
C) $\quad 1.42 \times 10^{5} \mathrm{C} / \mathrm{m}^{2}$
D) $\quad 1.38 \times 10^{-7} \mathrm{C} / \mathrm{m}^{2}$
E) $\quad 7.52 \times 10^{-7} \mathrm{C} / \mathrm{m}^{2}$

Q10. In FIGURE 8, short sections of two very long parallel lines of charges are shown, fixed in place, separated by 4.00 cm . The uniform linear charge densities are $\lambda_{1}=+8.00 \mu \mathrm{C} / \mathrm{m}$ and $\lambda_{2}=+4.00 \mu \mathrm{C} / \mathrm{m}$. where along the x -axis from wire 1 the net electric field will be zero.

Fig\#

A) $\quad+2.67 \mathrm{~cm}$
B) $\quad+5.00 \mathrm{~cm}$
C) $\quad+1.33 \mathrm{~cm}$
D) $\quad-2.00 \mathrm{~cm}$
E) $\quad-1.20 \mathrm{~cm}$

Q11. Four points 1, 2, 3, and 4 are in a uniform horizontal electric field \vec{E}, shown in the FIGURE 9. Points 2 and 1 are along same vertical line and points 4 and 1 are along same horizontal line. Rank the points according to their electric potentials, GREATEST FIRST (assume potential is zero at infinity)

Fig\#

A) 1,2 tie, 3,4
B) 4, 3, then 1 and 2 tie
C) 1 and 4 tie, 3,2
D) $1,2,3,4$
E) $\quad 4,3,2,1$

Q12. A charge of $1.50 \times 10^{-6} \mathrm{C}$ is put on an isolated metal sphere of radius 16.0 cm . With $\mathrm{V}=$ 0 at infinity, what is the electric potential at the center of the sphere.
A) $\quad 8.44 \times 10^{4} \mathrm{~V}$
B) $\quad 5.27 \times 10^{5} \mathrm{~V}$
C) 0
D) $\quad 16.0 \mathrm{~V}$
E) $\quad 32.0 \mathrm{~V}$

Q13. FIGURE 10 gives the electric potential V as a function of distance x . Rank the four regions according to the magnitude of the x -component of the electric field within them, GREATEST FIRST.

Fig\#

A) 2, 4, then 1 and 3 tie
B) 4, 2, then 1 and 3 tie
C) $4,2,3,1$
D) $4,3,1,2$
E) $2,1,3,4$

Q14. Two electrons are fixed 2.00 cm apart. Another electron is shot from infinity and stops midway between the two. What was the initial speed of the electron? [Assume potential is zero at infinity]
A) $318 \mathrm{~m} / \mathrm{s}$
B) $\quad 355 \mathrm{~m} / \mathrm{s}$
C) $\quad 251 \mathrm{~m} / \mathrm{s}$
D) $125 \mathrm{~m} / \mathrm{s}$
E) $\quad 875 \mathrm{~m} / \mathrm{s}$

Q15. If the voltage across a parallel-plate capacitor is doubled, which of the following statements is correct?
A) Its capacitance will remain the same
B) Its capacitance doubles
C) Its capacitance reduces to half
D) Charge stored on the capacitor reduces to half
E) Charge stored on the capacitor remains the same

Q16. In FIGURE 11, the battery has a potential difference of 30 V and the six capacitors each have a capacitance of $4.0 \mu \mathrm{~F}$. Find the charge on capacitor C_{1}.

Fig\#

A) $\quad 80.0 \mu \mathrm{C}$
B) $\quad 40.0 \mu \mathrm{C}$
C) $100 \mu \mathrm{C}$
D) $\quad 60.0 \mu \mathrm{C}$
E) $\quad 20.0 \mu \mathrm{C}$

Q17. For a 7.40 pF air-filled parallel plate capacitor, it is desired to store $7.40 \mu \mathrm{~J}$ energy with a potential difference of 652 V using a dielectric material between the plates. What is dielectric constant of the material to be filled between the plates?
A) $\quad 4.70$
B) $\quad 7.21$
C) 5.43
D) $\quad 3.16$
E) $\quad 1.12$

Q18. A parallel plate capacitors $\mathrm{C}_{1}=10 \mu \mathrm{~F}$ is charged to a potential difference of 10 V . If you then close the switch ' S ' to connect the charged capacitor C_{1} to another uncharged capacitor $\mathrm{C}_{2}=30 \mu \mathrm{~F}$ as shown in the FIGURE 12, find the new voltage V across the capacitors.

Fig\#

A) $\quad 2.5 \mathrm{~V}$
B) $\quad 5.0 \mathrm{~V}$
C) $\quad 10 \mathrm{~V}$
D) $\quad 3.3 \mathrm{~V}$
E) $\quad 6.6 \mathrm{~V}$

Q19. The current density in a wire is uniform and has magnitude $2.00 \times 10^{6} \mathrm{~A} / \mathrm{m}^{2}$, the wire's length is 0.100 m , and the density of conduction electrons is $8.49 \times 10^{28} \mathrm{~m}^{-3}$. How long does an electron take (on the average) to travel the length of the wire?
A) $\quad 6.79 \times 10^{2} \mathrm{~s}$
B) $\quad 1.50 \times 10^{2} \mathrm{~s}$
C) $\quad 4.10 \times 10^{2} \mathrm{~s}$
D) $\quad 9.90 \times 10^{2} \mathrm{~s}$
E) $\quad 8.40 \times 10^{2} \mathrm{~s}$

Phys102	First Major-162	Zero Version
Coordinator: Saleem Rao	Monday, May 01, 2017	Page: 9

Q20. An unknown resistor is connected between the terminals of a 3.0 V battery. Energy is dissipated in the resistor at the rate of 0.36 W . The same resistor is then connected between the terminals of a 1.5 V battery. At what rate is energy now dissipated?
A) $\quad 0.09 \mathrm{~W}$
B) 0.18 W
C) $\quad 0.06 \mathrm{~W}$
D) $\quad 0.72 \mathrm{~W}$
E) $\quad 0.50 \mathrm{~W}$

