Phys102	First Major-162	Zero Version
Coordinator: Saleem Rao	Monday, May 01, 2017	Page: 1

Q1. Three point charges are arranged as shown in **FIGURE 1**. Find the magnitude of the net electrostatic force on the point charge at the origin.

Fig#

Q2. Two small identical neutral metal spheres A and B of radii 2.0 cm have their centers separated by a fixed distance of 8.0 cm. Electrons are then transferred from sphere A to sphere B until the force of attraction between them becomes 36×10^{-5} N. How many electrons have been transferred from sphere A to sphere B?

A)	$1.0 imes10^{11}$
B)	$1.6 imes 10^8$
C)	1.6×10^{3}
D)	$1.0 imes10^{13}$
E)	$1.6 imes 10^7$

Q3. A spherical conducting shell of outer radius 5.0 cm has a net positive charge Q, then a point charge of -5.0 μ C is placed at its center as shown in **FIGURE 2**. If the net electric field at point P, 15 cm away from the center of the spherical shell is $\vec{E} = 2 \times 10^6 \hat{i}$ N/C, find the charge on the *outer surface* of the spherical shell

Fig#

Phys102	First Major-162	Zero Version
Coordinator: Saleem Rao	Monday, May 01, 2017	Page: 2
У	,	
\mathbf{Q} \dashv	X	
O CL	→ F	
2 3 15 cm	\xrightarrow{E}	

Р

Q4. Three identical point charges each of 1.0 nC are placed along a vertical line as shown in the **FIGURE 3**. Find the magnitude of the resultant electric field at a point P, 6.0 cm in front of middle charge.

Fig#

A)

B)

C)

D) E) -5.0 µC

 $+5.0 \ \mu C$

+10 μC +15 μC

-5.0 µC

 $-10 \mu C$

Phys102	First Major-162	Zero Version
Coordinator: Saleem Rao	Monday, May 01, 2017	Page: 3

Q5. In **FIGURE 4**, a 0.300 g metallic ball carrying a charge of $q = -29.4 \mu$ C, hangs from a light insulating string in a vertical electric field. If the ball is in static equilibrium and the tension in the string is zero find the magnitude and direction the electric field.

Fig#

- A)
- B) 2.94 N/C upward 200 N/C downward C)
- 100 N/C upward D)
- E) 150 N/C upward

Q6. How much work is required to turn an electric dipole 180° in a uniform electric field of magnitude E = 35.6 N/C if the dipole moment has a magnitude of $p = 3.02 \times 10^{-25}$ C. m and the initial angle between \vec{P} and \vec{E} is 64°?

A)	$+9.43\times10^{-24}~J$
B)	$-1.19 \times 10^{-24} \text{ J}$
C)	$-9.43 imes 10^{-24} ext{ J}$
D)	$+1.19 imes 10^{-24} ext{ J}$
E)	$+19.3 \times 10^{-24} \text{ J}$

Q7. FIGURE 5 shows, in cross section, two Gaussian spheres and two Gaussian cubes. A positive charge +q is placed at the center of inner sphere 'a' and a charge of -q is placed between the sphere 'c' and the cube 'd'. Rank the net flux Φ through the four Gaussian surfaces, GREATEST FIRST.

Fig#

- A) $\Phi_a, \Phi_b, \text{ and } \Phi_c \text{ tie, } \Phi_d$
- B) $\Phi_d, \Phi_a, \Phi_b, \Phi_c$
- C) Φ_d than Φ_a , Φ_b , and Φ_c tie
- D) $\Phi_d, \Phi_b, \Phi_c, \Phi_a$
- E) Φ_d and Φ_b tie, Φ_a and Φ_c tie

Q8. **FIGURE 6** shows, in cross-section, two solid insulating spheres 1 and 2, each of radius R. Positive charges q_1 and q_2 are uniformly distributed throughout the volume of sphere 1 and 2, respectively. Point P lies on a line connecting the centers of the spheres, at radial distance R/3 from the center of sphere 1. If the net electric field at point P is zero, what is the ratio q_2/q_1 ?

Fig#

Phys102	First Major-162	Zero Version
Coordinator: Saleem Rao	Monday, May 01, 2017	Page: 5

Q9. An electron is shot directly upward away from a uniformly positively charged plastic sheet as shown in **FIGURE 7**. The sheet is non-conducting, flat, and very large. If the magnitude of the electron's acceleration is 2.50×10^{16} m/s², what is the sheet's surface charge density? (ignore the effect of gravity)

Fig#

Q10. In **FIGURE 8**, short sections of two very long parallel lines of charges are shown, fixed in place, separated by 4.00 cm. The uniform linear charge densities are $\lambda_1 = +8.00 \ \mu\text{C/m}$ and $\lambda_2 = +4.00 \ \mu\text{C/m}$. where along the x-axis from wire 1 the net electric field will be zero.

Fig#

Phys102	First Major-162	Zero Version
Coordinator: Saleem Rao	Monday, May 01, 2017	Page: 6

Q11. Four points 1, 2, 3, and 4 are in a uniform horizontal electric field \vec{E} , shown in the FIGURE 9. Points 2 and 1 are along same vertical line and points 4 and 1 are along same horizontal line. Rank the points according to their electric potentials, GREATEST FIRST (assume potential is zero at infinity)

Fig#

- B) C) 1 and 4 tie, 3, 2
- 1, 2, 3, 4
- D) 4, 3, 2, 1 E)
- Q12. A charge of 1.50×10^{-6} C is put on an isolated metal sphere of radius 16.0 cm. With V = 0 at infinity, what is the electric potential at the center of the sphere.

$8.44 \times 10^4 \text{ V}$
$5.27 \times 10^{5} V$
0
16.0 V
32.0 V

Q13. FIGURE 10 gives the electric potential V as a function of distance x. Rank the four regions according to the *magnitude* of the x-component of the electric field within them, **GREATEST FIRST.**

Fig#

V(V)

 $|_{2}|$ 3

1

King Fahd University of Petroleum and Minerals Physics Department

4

X (m)

- A) 2, 4, then 1 and 3 tie
- B) 4, 2, then 1 and 3 tie
- C) 4, 2, 3, 1
- D) 4, 3, 1, 2
- E) 2, 1, 3, 4

Q14. Two electrons are fixed 2.00 cm apart. Another electron is shot from infinity and stops midway between the two. What was the initial speed of the electron? [Assume potential is zero at infinity]

- A) 318 m/s
- B) 355 m/s
- C) 251 m/s
- D) 125 m/s
- E) 875 m/s

Q15. If the voltage across a parallel-plate capacitor is doubled, which of the following statements is correct?

- A) Its capacitance will remain the same
- B) Its capacitance doubles
- C) Its capacitance reduces to half
- D) Charge stored on the capacitor reduces to half
- E) Charge stored on the capacitor remains the same

Q16. In **FIGURE 11**, the battery has a potential difference of 30 V and the six capacitors each have a capacitance of 4.0 μ F. Find the charge on capacitor C₁.

Fig#

- A) 80.0 μC
- B) 40.0 μC
- C) 100 µC
- D) 60.0 µC
- E) 20.0 μC

King Fahd University of Petroleum and Minerals Physics Department

Phys102	First Major-162	Zero Version
Coordinator: Saleem Rao	Monday, May 01, 2017	Page: 8

Q17. For a 7.40 pF air-filled parallel plate capacitor, it is desired to store 7.40 μ J energy with a potential difference of 652 V using a dielectric material between the plates. What is dielectric constant of the material to be filled between the plates?

A)	4.70
B)	7.21
C)	5.43
D)	3.16
E)	1.12

Q18. A parallel plate capacitors $C_1 = 10 \ \mu\text{F}$ is charged to a potential difference of 10 V. If you then close the switch 'S' to connect the charged capacitor C_1 to another uncharged capacitor $C_2 = 30 \ \mu\text{F}$ as shown in the **FIGURE 12**, find the new voltage V across the capacitors.

Fig#

Q19. The current density in a wire is uniform and has magnitude 2.00×10^6 A/m², the wire's length is 0.100 m, and the density of conduction electrons is 8.49×10^{28} m⁻³. How long does an electron take (on the average) to travel the length of the wire?

Phys102	First Major-162	Zero Version
Coordinator: Saleem Rao	Monday, May 01, 2017	Page: 9

Q20. An unknown resistor is connected between the terminals of a 3.0 V battery. Energy is dissipated in the resistor at the rate of 0.36 W. The same resistor is then connected between the terminals of a 1.5 V battery. At what rate is energy now dissipated?

A) 0.09 W
B) 0.18 W
C) 0.06 W
D) 0.72 W
E) 0.50 W