Phys102	Second Major-151	Zero Version
Coordinator: H Bahlouli	Sunday, November 22, 2015	Page: 1

Q1. Five identical point charges each with charge q = 10 nC are located at the corners of a regular hexagon, as shown in **Figure 1**. Find the magnitude of the net electric force on a point electric charge Q = 5.0 nC located at the center of the hexagon. (The distance between Q and q is a = 1.0 micro-meter).

A)	4.5	×10 ⁵	N
B)	0.0		Ν
C)	1.0	$\times 10^4$	Ν
D)	9.8	$\times 10^5$	Ν
E)	2.5	$\times 10^{6}$	N

Q2. Four point charges are located at the corners of a square (1.00 nm side), as shown in **Figure 2**. If the point charges are given by $q_1 = q_4 = 300$ nC and $q_2 = q_3 = q$, find the value of q so that the net electrostatic force on charge q_2 is zero?

Phys102	Second Major-151	Zero Version
Coordinator: H Bahlouli	Sunday, November 22, 2015	Page: 2

Q3. Consider three distant spheres with initial charges $Q_{1i} = 2.0$ C; $Q_{2i} = 3.0$ C and $Q_{3i} = 10$ C. If we allow these spheres to touch each other for a short time and then we separate them. The new electrostatic charges of these spheres become $Q_{1f} = q$; $Q_{2f} = 1.5$ q and $Q_{3f} = 2.5$ q. Find the value of q.

- A) 3.0 C
- B) 1.0 C
- C) 2.5 C
- D) 1.5 C
- E) 0

Q4. A charged particle of mass m = 2.5 g and charge 5.0 mC has a velocity of $V_0 = 25$ m/s in the positive x direction when it first enters a region where the electric field is uniform (E = 4.9 N/C in the positive y direction) as shown in Figure 3. What is the speed of the particle 2.0 s after it enters this region? (Take g = 9.8 m/s²)

A) 25 m/s

B) 32 m/s

C) 49 m/s

D) 44 m/s

E) 35 m/s

Q5. Two point charges q = 2.7 micro-Coulomb each, are located at two corners of an equilateral triangle whose sides have a length of 30 cm. Find the electric field created by the

two charges at the other corner of the triangle (point A in Figure 4). (\hat{i} and \hat{j} are unit vectors along the positive x and y axes, respectively)

Phys102	Second Major-151	Zero Version
Coordinator: H Bahlouli	Sunday, November 22, 2015	Page: 3

Q6. A point charge q = 0.25 nC is located in the xy-plane at a point having coordinates (+60 cm, +40 cm). At what point in the xy-plane will the electric field created by this point charge be 10 N/C and pointing in the negative x-direction?

A) (+13 cm, +40 cm) B) (-13 cm, +40 cm) C) (+40 cm, +40 cm) D) (-40 cm, +40 cm) E) (+60 cm, -40 cm)

Q7. A positive charge + \mathbf{q} and a negative charge - \mathbf{q} are located at equal distances from the origin **O** while a positive test charge +Q is placed on the y axis as shown in Figure 5. Which diagram below gives the **CORRECT** direction of the net electric force on the test charge + \mathbf{Q} ?

Q8. A flat surface with area **0.20** m² lies in the xy-plane, in a uniform electric field $\vec{E} = (5.1 \ \hat{i} + 2.1 \ \hat{j} + 3.5 \ \hat{k}) \times 10^3$ N/C. Find the magnitude of the electric flux through this surface. A) 0.70×10^3 N.m²/C

B) 1.1×10^3 N.m²/C C) 0.10×10^3 N.m²/C D) 1.9×10^3 N.m²/C E) 0.30×10^3 N.m²/C

Q9. A hollow spherical conductor, with inner radius **2.00** cm and outer radius **2.10** cm carries a charge of -2.00 C. If a point charge of + 5.00 C is placed at the center of the hollow conductor, find the surface charge density at the outer surface of the spherical conductor.

A) $+ 541 \text{ C/m}^2$ B) $- 541 \text{ C/m}^2$ C) $- 150 \text{ C/m}^2$ D) $+ 250 \text{ C/m}^2$ E) $- 250 \text{ C/m}^2$

Phys102	Second Major-151	Zero Version
Coordinator: H Bahlouli	Sunday, November 22, 2015	Page: 4

Q10. An infinitely long charged wire located at x = -2.00 m has a uniform linear charge density $\lambda = -1.50 \mu$ C/m and lies parallel to the y-axis. A point charge of +1.50 μ C is located at a point (x =1.00 m, y = 0.00 m). Find the magnitude and direction of the resultant electric field at a point (x = +2.00 m, y = 0.00 m) due to the point charge and the charged wire.

A) 6.75×10^3 N/C, pointing towards positive x-axis B) 6.75×10^3 N/C, pointing towards negative x-axis C) 1.52×10^3 N/C, pointing towards positive x-axis D) 1.52×10^3 N/C, pointing towards negative x-axis E) 2.22×10^3 N/C, pointing towards negative y-axis

Q11. A point charge $q = +12.0 \ \mu C$ is located at the geometric center of a cube of side L = 10.0 cm. What is the electric flux through one face of the cube?

A)	0.226×10^{6}	Nm ² /C
B)	1.45×10^{6}	Nm ² /C
C)	12.0×10^{6}	Nm ² /C
D)	48.0×10^{6}	Nm ² /C
E)	0	

Q12. A thin spherical shell of radius 20 cm carries a charge of -5.0 nC distributed uniformly over its surface. At the center of the shell there is a point charge q. If the electric field at a distance of 10 cm from the center of the shell is 1.8×10^3 N/C, find the magnitude of q.

A) 2.0 nC

- B) 15 nCC) 3.0 nCD) 10 nC
- E) 18 nC

Q13. Consider two point charges + q and – q located at x = -a and x = +a, respectively. Which one of the following answers is TRUE for the electric field (\vec{E}) and potential (V) at the origin? (\hat{i} is a unit vector in the positive x direction)

A) $\vec{E} = (2kq/a^2)\hat{i}$, V=0 B) $\vec{E} = 0$, V=2kq/a C) $\vec{E} = 0$, V=0 D) $\vec{E} = (2kq/a^2)\hat{i}$, V=2kq/a E) $\vec{E} = (-2kq/a^2)\hat{i}$, V=-2kq/a

Phys102	Second Major-151	Zero Version
Coordinator: H Bahlouli	Sunday, November 22, 2015	Page: 5

Q14. Two point charges $q_1 = +12$ nC and q_2 are placed as shown in Figure 6. If the potential difference between points A and B is $V_A - V_B = 35$ V, what is the value of the charge q_2 .

$$\begin{array}{c} q_{1} \\ \bullet & 3.0 \text{ m} \\ \bullet & 4.0 \text{ m} \\ & 4.0 \text{ m} \\ \bullet & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & & \bullet \\ \bullet & q_{2} \end{array}$$

$$\begin{array}{c} \bullet & q_{2} \end{array}$$

Q15. In Figure 7, points 1, 2, and 3 are all located at the same very large distance from a dipole \vec{P} . Rank them according to the values of the electric dipole potential at these points, from the most negative to the most positive.

$$\vec{P}$$
 • 3
1•
A) 1, 3, 2
B) 3, 2, 1
C) 2, 3, 1
D) 1, 2, 3
E) 1 and 2 tie, then 3

2.

Q16. A graph of the x component of the electric field as a function of x in a region of space is shown in **Figure 8** (the electric field along y and z directions is zero). What is the potential difference between x = 3.00 m and x = 6.00 m?

Phys102	Second Major-151	Zero Version
Coordinator: H Bahlouli	Sunday, November 22, 2015	Page: 6

Q17. Two metallic spheres 1 and 2, far away from each other have radii R_1 and R_2 , respectively (**Figure 9**), and $R_1 = 3R_2$. The sphere with radius R_1 carries -10 nC charge while the other one carries +38 nC charge. The spheres are then connected by a thin long wire until electrostatic equilibrium is reached. What is the ratio of electric fields (E_2/E_1) where E_1 is the electric field at the surface of sphere 1 and E_2 is the electric field at the surface of sphere 2?

Q18. In Figure 10 the battery has a potential difference of 15 V and five identical capacitors each having capacitance of 6.0 μ F. What is the potential difference across capacitor C₅?

Q19. *n* identical capacitors (each of capacitance **5.0** μ F) are connected in parallel across a **10** V battery. If the total electrostatic energy stored in all these capacitors is **1.5x10**⁻³ J, what is the value of integer n?

A)	6
B)	5
C)	10
D)	60
E)	100

Q20. An air filled parallel-plate capacitor has a capacitance C = 25.0 pF and each of its plates has an area of 0.400 m². If the space between the plates is filled with a dielectric material having $\kappa = 4.50$ and the area is increased to 0.600 m², what will be the new capacitance?

A)	169	pF
B)	75.0	pF
C)	112.	pF
D)	22.5	pF
E)	134	pF

Phys102	Second Major-151	Zero Version
Coordinator: H Bahlouli	Sunday, November 22, 2015	Page: 7

$F = k \frac{q_1 q_2}{r^2}$	$C_{air} = \frac{\varepsilon_o A}{d} (for \ parallel \ plate \ capacitor)$
$\vec{F} = q\vec{E} = m\vec{a}$	$C_{air} = 2\pi\varepsilon_o \frac{L}{\ln\left(\frac{b}{a}\right)} (for \ cylindrical \ capacitor)$
$U = -\vec{p} \cdot \vec{E}$	$C_{air} = 4\pi\varepsilon_o \left(\frac{ab}{b-a}\right) (for spherical capacitor)$
$\vec{\tau} = \vec{p} \times \vec{E}$	$C = 4\pi\varepsilon_o R$
$\Phi = \int_{Surface} \vec{E} \cdot d\vec{A}$	$U = \frac{1}{2} CV^2$
$\Phi_c = \prod \vec{E}.d\vec{A} = \frac{q_{in}}{\varepsilon_0}$	$u = \frac{1}{2}\varepsilon_o E^2$
$E = \frac{\sigma}{2\varepsilon_o}$	$I = \frac{dQ}{dt} = JA$
$E = \frac{\sigma}{\varepsilon_o}$	$R = \frac{V}{I} = \rho \frac{L}{A}$
$E = k \frac{q}{r^2}$	$J = nev_d$
$E = k \frac{q}{R^3} r$	$ \begin{array}{l} J = \sigma E \\ R = R_0 \left[1 + \alpha (T - T_0) \right] \end{array} $
$E = \frac{2k\lambda}{r}$	$\rho = \rho_0 \left[1 + \alpha (T - T_0) \right]$
$\Delta V = V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{S} = \frac{\Delta U}{q_0}$	P = IV
$V = k \frac{q}{r} , V = \sum_{i=1}^{N} \frac{kq_i}{r_i}$	$\mathbf{v} = \mathbf{v}_{o} + \mathbf{at}$ $\mathbf{x} - \mathbf{x}_{o} = \mathbf{v}_{o}\mathbf{t} + \frac{1}{2}\mathbf{a}\mathbf{t}^{2}$
$E_x = -\frac{\partial V}{\partial x}, E_y = -\frac{\partial V}{\partial y}, E_z = -\frac{\partial V}{\partial z}$	$v^2 = v_0^2 + 2 a (x-x_0)$ <u>Constants:</u> $k = 9.00 \times 10^9 \text{ N.m}^2/\text{C}^2$
$U = k \frac{q_1 q_2}{r_{12}}$	$\begin{aligned} \varepsilon_0 &= 8.85 \times 10^{-12} \text{ C}^2/\text{N.m}^2\\ e &= 1.60 \times 10^{-19} \text{ C}\\ m_e &= 9.11 \times 10^{-31} \text{ kg} \end{aligned}$
$\Delta U = -W$	$m_p = 1.67 \times 10^{-27} \text{ kg}$ g = 9.80 m/s ²
$C = \frac{q}{V}$	$ \mu = \text{micro} = 10^{-6} \qquad M = \text{mega} = 10^{6} \\ n = \text{nano} = 10^{-9} \qquad p = \text{pico} = 10^{-12} \\ \mu = 10^{-2} \qquad \mu = 10^{-12} \\ \mu = 10^{-2} \qquad \mu = 10^{-12} \\ \mu = 10^{-12} \mu = 10^{-12} $
$C = \kappa C_{air}$	$m = m_1 ll_1 = 10^{-3}$ $k = k_1 lo = 10^{-3}$