Q1. Five identical point charges each with charge $\boldsymbol{q}=\mathbf{1 0} \mathrm{nC}$ are located at the corners of a regular hexagon, as shown in Figure 1. Find the magnitude of the net electric force on a point electric charge $\boldsymbol{Q}=\mathbf{5 . 0} \mathrm{nC}$ located at the center of the hexagon. (The distance between Q and q is $a=\mathbf{1 . 0}$ micro-meter).

A) $4.5 \times 10^{5} \mathrm{~N}$
B) $0.0 \quad \mathrm{~N}$
C) $1.0 \times 10^{4} \mathrm{~N}$
D) $9.8 \times 10^{5} \mathrm{~N}$
E) $2.5 \times 10^{6} \mathrm{~N}$

Q2. Four point charges are located at the corners of a square ($\mathbf{1 . 0 0} \mathrm{nm}$ side), as shown in Figure 2. If the point charges are given by $q_{1}=q_{4}=\mathbf{3 0 0} \mathrm{nC}$ and $q_{2}=q_{3}=q$, find the value of q so that the net electrostatic force on charge q_{2} is zero?

A) -849 nC
B) +849 nC
C) -235 nC
D) +300 nC
E) -300 nC

Q3. Consider three distant spheres with initial charges $\mathrm{Q}_{1 \mathrm{i}}=\mathbf{2 . 0} \mathrm{C} ; \mathrm{Q}_{2 \mathrm{i}}=\mathbf{3 . 0} \mathrm{C}$ and $\mathrm{Q}_{3 \mathrm{i}}=\mathbf{1 0}$
C. If we allow these spheres to touch each other for a short time and then we separate them. The new electrostatic charges of these spheres become $\mathrm{Q}_{1 \mathrm{f}}=\mathrm{q} ; \mathrm{Q}_{2 \mathrm{f}}=\mathbf{1 . 5} \mathrm{q}$ and $\mathrm{Q}_{3 \mathrm{f}}=\mathbf{2 . 5} \mathrm{q}$. Find the value of q.
A) 3.0 C
B) 1.0 C
C) 2.5 C
D) 1.5 C
E) 0

Q4. A charged particle of mass $\mathrm{m}=\mathbf{2 . 5} \mathrm{g}$ and charge $\mathbf{5 . 0} \mathrm{mC}$ has a velocity of $\mathrm{V}_{\mathrm{o}}=\mathbf{2 5} \mathrm{m} / \mathrm{s}$ in the positive x direction when it first enters a region where the electric field is uniform ($\mathrm{E}=$ 4.9 N/C in the positive y direction) as shown in Figure 3. What is the speed of the particle $\mathbf{2 . 0} \mathrm{s}$ after it enters this region? (Take $\mathrm{g}=\mathbf{9 . 8} \mathrm{m} / \mathrm{s}^{2}$)
y

A) $25 \mathrm{~m} / \mathrm{s}$
B) $32 \mathrm{~m} / \mathrm{s}$
C) $49 \mathrm{~m} / \mathrm{s}$
D) $44 \mathrm{~m} / \mathrm{s}$
E) $35 \mathrm{~m} / \mathrm{s}$

Q5. Two point charges $\mathbf{q}=\mathbf{2 . 7}$ micro-Coulomb each, are located at two corners of an equilateral triangle whose sides have a length of $\mathbf{3 0} \mathrm{cm}$. Find the electric field created by the two charges at the other corner of the triangle (point A in Figure 4). (î and \hat{j} are unit vectors along the positive x and y axes, respectively)

A) $4.7 \times 10^{5} \hat{j} \mathrm{~N} / \mathrm{C}$
B) $1.3 \times 10^{5} \hat{j} \mathrm{~N} / \mathrm{C}$
C) $(5.0 \hat{i}+1.3 \hat{j}) \times 10^{5} \mathrm{~N} / \mathrm{C}$
D) $0.00 \mathrm{~N} / \mathrm{C}$
E) $4.7 \times 10^{5} \hat{\mathrm{i}} \mathrm{N} / \mathrm{C}$

Q6. A point charge $\mathrm{q}=\mathbf{0 . 2 5} \mathrm{nC}$ is located in the xy-plane at a point having coordinates $(+\mathbf{6 0}$ $\mathrm{cm},+\mathbf{4 0} \mathrm{cm}$). At what point in the xy-plane will the electric field created by this point charge be $10 \mathrm{~N} / \mathrm{C}$ and pointing in the negative x -direction?
A) $(+13 \mathrm{~cm},+40 \mathrm{~cm})$
B) $(-13 \mathrm{~cm},+40 \mathrm{~cm})$
C) $(+40 \mathrm{~cm},+40 \mathrm{~cm})$
D) $(-40 \mathrm{~cm},+40 \mathrm{~cm})$
E) $(+60 \mathrm{~cm},-40 \mathrm{~cm})$

Q7. A positive charge $+\mathbf{q}$ and a negative charge $-\mathbf{q}$ are located at equal distances from the origin \mathbf{O} while a positive test charge $+\boldsymbol{Q}$ is placed on the y axis as shown in Figure 5. Which diagram below gives the CORRECT direction of the net electric force on the test charge $+\mathbf{Q}$?

A) \rightarrow
B) \uparrow
C) \square
D) \leftarrow
E) \downarrow

Q8. A flat surface with area $\mathbf{0 . 2 0} \mathrm{m}^{2}$ lies in the xy-plane, in a uniform electric field $\vec{E}=(\mathbf{5 . 1} \hat{i}+\mathbf{2 . 1} \hat{j}+\mathbf{3 . 5} \hat{k}) \times \mathbf{1 0}^{\mathbf{3}} \mathrm{N} / \mathrm{C}$. Find the magnitude of the electric flux through this surface.
A) $0.70 \times 10^{3} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}$
B) $1.1 \times 10^{3} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}$
C) $0.10 \times 10^{3} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}$
D) $1.9 \times 10^{3} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}$
E) $0.30 \times 10^{3} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}$

Q9. A hollow spherical conductor, with inner radius $\mathbf{2 . 0 0} \mathrm{cm}$ and outer radius $\mathbf{2 . 1 0} \mathrm{cm}$ carries a charge of $\mathbf{- 2 . 0 0} \mathrm{C}$. If a point charge of $+\mathbf{5 . 0 0} \mathrm{C}$ is placed at the center of the hollow conductor, find the surface charge density at the outer surface of the spherical conductor.
A) $+541 \mathrm{C} / \mathrm{m}^{2}$
B) $-541 \mathrm{C} / \mathrm{m}^{2}$
C) $-150 \mathrm{C} / \mathrm{m}^{2}$
D) $+250 \mathrm{C} / \mathrm{m}^{2}$
E) $-250 \mathrm{C} / \mathrm{m}^{2}$

Q10. An infinitely long charged wire located at $\mathrm{x}=\mathbf{- \mathbf { 2 } . 0 0} \mathrm{m}$ has a uniform linear charge density $\lambda=\mathbf{- 1 . 5 0} \mu \mathrm{C} / \mathrm{m}$ and lies parallel to the y-axis. A point charge of $+\mathbf{1 . 5 0} \mu \mathrm{C}$ is located at a point $(\mathrm{x}=\mathbf{1 . 0 0} \mathrm{m}, \mathrm{y}=\mathbf{0 . 0 0} \mathrm{m})$. Find the magnitude and direction of the resultant electric field at a point $(x=+\mathbf{2 . 0 0} \mathrm{m}, \mathrm{y}=\mathbf{0 . 0 0} \mathrm{m})$ due to the point charge and the charged wire.
A) $6.75 \times 10^{3} \mathrm{~N} / \mathrm{C}$, pointing towards positive x -axis
B) $6.75 \times 10^{3} \mathrm{~N} / \mathrm{C}$, pointing towards negative x -axis
C) $1.52 \times 10^{3} \mathrm{~N} / \mathrm{C}$, pointing towards positive x -axis
D) $1.52 \times 10^{3} \mathrm{~N} / \mathrm{C}$, pointing towards negative x -axis
E) $2.22 \times 10^{3} \mathrm{~N} / \mathrm{C}$, pointing towards negative y -axis

Q11. A point charge $\mathrm{q}=+\mathbf{1 2 . 0} \mu \mathrm{C}$ is located at the geometric center of a cube of side $\mathrm{L}=$ 10.0 cm . What is the electric flux through one face of the cube?
A) $0.226 \times 10^{6} \quad \mathrm{Nm}^{2} / \mathrm{C}$
B) $1.45 \times 10^{6} \quad \mathrm{Nm}^{2} / \mathrm{C}$
C) $12.0 \times 10^{6} \quad \mathrm{Nm}^{2} / \mathrm{C}$
D) $48.0 \times 10^{6} \quad \mathrm{Nm}^{2} / \mathrm{C}$
E) 0

Q12. A thin spherical shell of radius $\mathbf{2 0} \mathbf{~ c m}$ carries a charge of $\mathbf{- 5 . 0} \mathrm{nC}$ distributed uniformly over its surface. At the center of the shell there is a point charge q. If the electric field at a distance of $\mathbf{1 0} \mathbf{~ c m}$ from the center of the shell is $\mathbf{1 . 8 \times 1 0 ^ { \mathbf { 3 } }} \mathrm{N} / \mathrm{C}$, find the magnitude of q .
A) 2.0 nC
B) 15 nC
C) 3.0 nC
D) 10 nC
E) 18 nC

Q13. Consider two point charges +q and $-q$ located at $\mathrm{x}=-\mathrm{a}$ and $\mathrm{x}=+\mathrm{a}$, respectively. Which one of the following answers is TRUE for the electric field (\vec{E}) and potential (V) at the origin? (\hat{i} is a unit vector in the positive x direction)
A) $\vec{E}=\left(2 k q / a^{2}\right) \hat{i}, V=0$
B) $\vec{E}=0, \mathrm{~V}=2 \mathrm{kq} / \mathrm{a}$
C) $\vec{E}=0, \mathrm{~V}=0$
D) $\vec{E}=\left(2 \mathrm{kq} / a^{2}\right) \hat{i}, \mathrm{~V}=2 \mathrm{kq} / a$
E) $\vec{E}=\left(-2 k q / a^{2}\right) \hat{i}, \mathrm{~V}=-2 k q / a$

Q14. Two point charges $\mathrm{q}_{1}=+\mathbf{1 2} \mathrm{nC}$ and q_{2} are placed as shown in Figure 6. If the potential difference between points A and B is $V_{A}-V_{B}=35 V$, what is the value of the charge q_{2}.

A) -17 nC
B) +17 nC
C) -10 nC
D) +10 nC
E) -33 nC

Q15. In Figure 7, points 1, 2, and 3 are all located at the same very large distance from a dipole \vec{P}. Rank them according to the values of the electric dipole potential at these points, from the most negative to the most positive.
2.

1*
A) $1,3,2$
B) 3,2,1
C) $2,3,1$
D) $1,2,3$
E) 1 and 2 tie, then 3

Q16. A graph of the x component of the electric field as a function of x in a region of space is shown in Figure 8 (the electric field along y and z directions is zero). What is the potential difference between $x=\mathbf{3 . 0 0} \mathrm{m}$ and $x=\mathbf{6 . 0 0} \mathrm{m}$?

A) -250 V
B) +50.0 V
C) $0 \quad \mathrm{~V}$
D) -50.0 V
E) $-150 \quad \mathrm{~V}$

Phys102	Second Major-151	Zero Version
Coordinator: H Bahlouli	Sunday, November 22, 2015	Page: 6

Q17. Two metallic spheres 1 and 2, far away from each other have radii R_{1} and R_{2}, respectively (Figure 9), and $\boldsymbol{R}_{\mathbf{1}}=\mathbf{3} \boldsymbol{R}_{\mathbf{2}}$. The sphere with radius R_{1} carries $\mathbf{- 1 0} \mathrm{nC}$ charge while the other one carries $+\mathbf{3 8} \mathrm{nC}$ charge. The spheres are then connected by a thin long wire until electrostatic equilibrium is reached. What is the ratio of electric fields $\left(\boldsymbol{E}_{2} / \boldsymbol{E}_{1}\right)$ where \boldsymbol{E}_{1} is the electric field at the surface of sphere 1 and \boldsymbol{E}_{2} is the electric field at the surface of sphere 2?

A) 3
B) 4
C) 5
D) 1
E) 2

Q18. In Figure $\mathbf{1 0}$ the battery has a potential difference of $\mathbf{1 5} \mathrm{V}$ and five identical capacitors each having capacitance of $\mathbf{6 . 0} \mu \mathrm{F}$. What is the potential difference across capacitor \boldsymbol{C}_{5} ?

A) 9.0 V
B) 2.0 V
C) 12 V
D) 14 V
E) 7.0 V

Q19. n identical capacitors (each of capacitance $\mathbf{5 . 0} \mu \mathrm{F}$) are connected in parallel across a 10 V battery. If the total electrostatic energy stored in all these capacitors is $\mathbf{1 . 5 \times 1 0 ^ { - 3 }} \mathrm{J}$, what is the value of integer n ?
A) 6
B) 5
C) 10
D) 60
E) 100

Q20. An air filled parallel-plate capacitor has a capacitance $\mathrm{C}=\mathbf{2 5 . 0} \mathrm{pF}$ and each of its plates has an area of $\mathbf{0 . 4 0 0} \mathrm{m}^{2}$. If the space between the plates is filled with a dielectric material having $\boldsymbol{\kappa}=\mathbf{4 . 5 0}$ and the area is increased to $\mathbf{0 . 6 0 0} \mathrm{m}^{2}$, what will be the new capacitance?
A) 169 pF
B) 75.0 pF
C) $112 . \mathrm{pF}$
D) 22.5 pF
E) 134 pF

$F=k \frac{q_{1} q_{2}}{r^{2}}$	$C_{\text {air }}=\frac{\varepsilon_{0} A}{d} \quad(\text { for parallel plate capacitor })$
$\vec{F}=q \vec{E}=m \vec{a}$	$C_{\text {air }}=2 \pi \varepsilon_{o} \frac{L}{\ln \left(\frac{b}{a}\right)}$ (for cylindrical capacitor)
$U=-\vec{p} \cdot \vec{E}$	$C_{\text {air }}=4 \pi \varepsilon_{o}\left(\frac{a b}{b-a}\right) \quad$ (for spherical capacitor $)$
$\vec{\tau}=\vec{p} \times \vec{E}$	$C=4 \pi \varepsilon_{0} R$
$\Phi=\int_{\text {Surface }} \vec{E} \cdot d \vec{A}$	$U=\frac{1}{2} C V^{2}$
$\Phi_{c}=\oint \vec{E} \cdot d \vec{A}=\frac{q_{i n}}{\varepsilon_{0}}$	$u=\frac{1}{2} \varepsilon_{0} E^{2}$
$E=\frac{\sigma}{2 \varepsilon_{o}}$	$I=\frac{d Q}{d t}=J A$
$E=\frac{\sigma}{\varepsilon_{o}}$	$R=\frac{V}{I}=\rho \frac{L}{A}$
$E=k \frac{q}{r^{2}}$	$J=n e v_{d}$
$E=k \underline{q}$	$J=\sigma E$
$E=k \frac{t}{R^{3}} r$	$R=R_{0}\left[1+\alpha\left(T-T_{0}\right)\right]$
$E=\frac{2 k \lambda}{r}$	$\rho=\rho_{0}\left[1+\alpha\left(T-T_{0}\right)\right]$
$\Delta V=V_{B}-V_{A}=-\int_{A}^{B} \vec{E} \cdot d \vec{S}=\frac{\Delta U}{q^{\prime}}$	$P=I V$
$V=k \frac{q}{r} \quad, \quad V=\sum_{i=1}^{N} \frac{k q_{i}}{r_{i}}$	$\begin{aligned} & v=v_{0}+a t \\ & x-x_{0}=v_{0} t+\frac{1}{2} a t^{2} \end{aligned}$
$E_{x}=\frac{\partial V}{\partial x}, E_{y}=\frac{\partial V}{\partial y}, E_{z}=\frac{\partial V}{\partial z}$	$\mathrm{v}^{2}=\mathrm{v}^{2}+2 \mathrm{a}\left(\mathrm{x}-\mathrm{x}_{0}\right)$
$E_{x}=-\frac{\partial V}{\partial x}, \quad E_{y}=-\frac{\partial V}{\partial y}, \quad E_{z}=-\frac{\partial V}{\partial z}$	$\begin{aligned} & \text { Constants: } \\ & \hline \mathrm{k}=9.00 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2} \\ & \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2} \end{aligned}$
$U=k \frac{q_{1} q_{2}}{r_{12}}$	$\mathrm{e}=1.60 \times 10^{-19} \mathrm{C}$
	$\mathrm{m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}$
	$\mathrm{m}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}$
$\Delta U=-W$	$\mathrm{g}=9.80 \mathrm{~m} / \mathrm{s}^{2}$
$C=\frac{q}{V}$	$\mu=$ micro $=10^{-6} \quad \mathrm{M}=$ mega $=10^{6}$
$C=\frac{a}{V}$	$\mathrm{n}=$ nano $=10^{-9} \quad \mathrm{p}=$ pico $=10^{-12}$
$C=\kappa C_{\text {air }}$	$\mathrm{m}=$ milli $=10^{-3} \quad \mathrm{k}=$ kilo $\quad=10^{3}$

