Q1.
Two identical conducting spheres A and B carry equal charge Q , and are separated by a distance much larger than their diameters. Initially the electrostatic force between them is F . A third identical uncharged conducting sphere C is first touched to A , then to B , and then moved away. As a result of this, the electrostatic force between A and B becomes:
A) $3 \mathrm{~F} / 8$
B) $F / 4$
C) $F / 2$
D) $F / 16$
E) F

Sec\# Electric Charge - Coulomb's Law
Grade\# 44

Q2.

A positively charged sphere of mass 1.00 g falls from rest from a height of 5.00 m , in a uniform electric field of magnitude $1.00 \times 10^{4} \mathrm{~N} / \mathrm{C}$ and is directed vertically downward. The sphere hits the ground with a speed of $20.0 \mathrm{~m} / \mathrm{s}$. What is the charge on the sphere?
A) $+3.02 \mu \mathrm{C}$
B) $-1.00 \mu \mathrm{C}$
C) $+5.23 \mu \mathrm{C}$
D) $-5.23 \mu \mathrm{C}$
E) $+1.00 \mu \mathrm{C}$

Sec\# Electric fields - A point Charge in an Electric Field
Grade\# 47

Q3.

Figure 1 shows a dipole rotating under the effect of an electric field pointing along the negative x -axis. Which one of the following statements is TRUE

Fig\#

A) The potential energy of the dipole is decreasing.
B) The torque on the dipole is directed into of the page.
C) The dipole is rotating clockwise.
D) The work done on the dipole by the field is negative.
E) The dipole will stop when it is pointing parallel to the positive x -axis.

Sec\# Electric fields - A Dipole in an Electric Field
Grade\# 48

Q4.

Three point charges are located at the corners of a square as shown in Figure 2. Find the value of Q if the electric field at the corner A is zero. Take $\mathrm{q}=-7.00 \mu \mathrm{C}$

Fig\#

A) $19.8 \mu \mathrm{C}$
B) $14.0 \mu \mathrm{C}$
C) $9.90 \mu \mathrm{C}$
D) $4.95 \mu \mathrm{C}$
E) $2.54 \mu \mathrm{C}$

Sec\# Electric fields - The Electric Field Due to a Point Charge Grade\# 54

Q5.
Figure $3 \mathrm{a}, \mathrm{b}$ and c , show the cross sections of three cylinders each carrying a uniform charge Q. Concentric with each cylinder is a cylindrical Gaussian surface, all three with the same radius. Rank the Gaussian surfaces according to the electric field at any point on the surface, GREATEST FIRST.

Fig\#

(a)

(b)

(c)
A) All tie
B) a, b, c
C) b, c, a
D) $\mathrm{c}, \mathrm{b}, \mathrm{a}$
E) $\mathrm{a}, \mathrm{c}, \mathrm{b}$

Sec\# Gauss's law - Flux of an Electric Field
Grade\# 57

Q6.

A uniformly charged conducting sphere of 3.0 cm diameter has a surface charge density of $10 \mu \mathrm{C} / \mathrm{m}^{2}$. Find the total electric flux leaving the surface of the sphere.
A) $3.2 \times 10^{3} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}$
B) $1.3 \times 10^{4} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}$
C) $2.5 \times 10^{3} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}$
D) $1.4 \times 10^{5} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}$
E) $6.7 \times 10^{2} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}$

Sec\# Gauss's law - Gauss's Law
Grade\# 55

Q7.

A $6.0 \mu \mathrm{C}$ charge is placed on a thin spherical conducting shell of radius $\mathrm{R}=5.0 \mathrm{~cm}$. A particle with a charge of $-10 \mu \mathrm{C}$ is placed at the center of the shell. The magnitude and direction of the electric field at a point 2 R from the center of the shell are:
A) $3.6 \times 10^{6} \mathrm{~N} / \mathrm{C}$, toward the center
B) $3.6 \times 10^{6} \mathrm{~N} / \mathrm{C}$, away from the center
C) 0
D) $5.4 \times 10^{6} \mathrm{~N} / \mathrm{C}$, toward the center
E) $5.4 \times 10^{6} \mathrm{~N} / \mathrm{C}$, away from the center

Sec\# Gauss's law - A Charged Isolated Conductor
Grade\# 56

Q8.

A long, straight wire has fixed negative charge with a linear charge density of magnitude $4.5 \mathrm{nC} / \mathrm{m}$. The wire is enclosed by a coaxial, thin walled nonconducting cylindrical shell of radius 20 cm . The shell is to have a positive charge on its outside surface (with a surface charge density σ) that makes the net electric field at points 30 cm from the center of the shell equal to zero. Calculate σ.
A) $3.6 \times 10^{-9} \mathrm{C} / \mathrm{m}^{2}$
B) $3.0 \times 10^{-10} \mathrm{C} / \mathrm{m}^{2}$
C) $1.5 \times 10^{-10} \mathrm{C} / \mathrm{m}^{2}$
D) $4.5 \times 10^{-7} \mathrm{C} / \mathrm{m}^{2}$
E) $7.8 \times 10^{-5} \mathrm{C} / \mathrm{m}^{2}$

Sec\# Gauss's law - Applying Gauss's Law: Cylindrical Symmetry

Grade\# 49

Q9.
Two large metal plates of area $2.0 \mathrm{~m}^{2}$ face each other, 6.0 cm apart, with equal charge magnitudes $|\mathrm{q}|$ but opposite signs. The magnitude of the electric field between the plates is $1.2 \times 10^{2} \mathrm{~N} / \mathrm{C}$. Find $|\mathrm{q}|$.
A) 2.1 nC
B) 1.1 nC
C) 0.50 nC
D) 13 nC
E) 0.40 nC

Sec\# Gauss's law - Applying Gauss's Law: Planar Symmetry Grade\# 60

Q10.
A glass sphere of diameter 1.00 mm has been charged to +100 nC . A proton is fired from a large distance toward the sphere. What initial speed must the proton have to just reach the surface of the sphere? (Take $\mathrm{V}=0$ at a large distance from the sphere)
A) $1.86 \times 10^{7} \mathrm{~m} / \mathrm{s}$
B) $9.10 \times 10^{7} \mathrm{~m} / \mathrm{s}$
C) $5.34 \times 10^{6} \mathrm{~m} / \mathrm{s}$
D) $4.50 \times 10^{9} \mathrm{~m} / \mathrm{s}$
E) $2.67 \times 10^{6} \mathrm{~m} / \mathrm{s}$

Sec\# Electric Potential - Electric Potential Energy of a System of Point Charges
Grade\# 49
Q11.
Figure 4 shows a plot for the electric field E_{x} as a function of x . Find the magnitude of the potential difference between the points $x=2.00 \mathrm{~m}$ and $\mathrm{x}=6.00 \mathrm{~m}$.

Fig\#

A) 14.5 V
B) 12.5 V
C) 10.0 V
D) 16.5 V
E) 11.0 V

Sec\# Electric Potential - Potential Due to a Point Charge
Grade\# 46
Q12.
What are the magnitude and direction of the electric field at point P in Figure 5?
Fig\#

A) $1.0 \times 10^{4} \mathrm{~V} / \mathrm{m}$ to the left
B) $1.0 \times 10^{4} \mathrm{~V} / \mathrm{m}$ to the right
C) $2.0 \times 10^{4} \mathrm{~V} / \mathrm{m}$ to the left
D) $2.0 \times 10^{4} \mathrm{~V} / \mathrm{m}$ to the right
E) $3.0 \times 10^{3} \mathrm{~V} / \mathrm{m}$ upward

Sec\# Electric Potential - calculating the Field from the Potential Grade\# 46

Q13.
What is the charge on a conducting sphere of radius $\mathrm{R}=0.20 \mathrm{~m}$ if the potential at a distance $\mathrm{r}=0.10 \mathrm{~m}$ from the center of the sphere is 1500 V . (Take $\mathrm{V}=0$ at infinity).
A) $3.3 \times 10^{-8} \mathrm{C}$
B) $1.7 \times 10^{-8} \mathrm{C}$
C) $1.5 \times 10^{-8} \mathrm{C}$
D) $2.5 \times 10^{-8} \mathrm{C}$
E) $4.5 \times 10^{-8} \mathrm{C}$

Sec\# Electric Potential - Potential of a Charged Isolated Conductor
Grade\# 61
Q14.
In Figure 6, particles with charges $\mathrm{q}_{1}=+10 \mu \mathrm{C}$ and $\mathrm{q}_{2}=-30 \mu \mathrm{C}$ are fixed in place with a separation of $d=24 \mathrm{~cm}$. What is the value of Q that will make the potential equal zero at point P.

Fig\#
Phys102 Second Major-122 Zero Version

A) $7.1 \mu \mathrm{C}$
B) $5.1 \mu \mathrm{C}$
C) $10 \mu \mathrm{C}$
D) $3.5 \mu \mathrm{C}$
E) $4.5 \mu \mathrm{C}$

Sec\# Electric Potential - Electric Potential Energy of a System of Point Charges
Grade\# 53
Q15.
Figure 7 shows three circuits, each consisting of a switch S and two capacitors, initially charged as indicated (top plate positive). After the switches have been closed, rank the charge on the right capacitor, GREATEST FIRST.

Fig\#

(1)

(2)

(3)
A) 1 and 2 tie, then 3
B) $2,1,3$
C) All tie
D) $3,2,1$
E) $3,1,2$

Sec\# Capacitance - Capacitors in Parallel and in Series
Grade\# 39

Q16.
Two capacitors are identical except that one is filled with air and the other is filled with oil. Both capacitors carry the same charge. If $\mathrm{E}_{\text {air }}$ refers to the electric field inside the capacitor filled with air, and $\mathrm{E}_{\text {oil }}$ refers to the electric field inside the capacitor filled with oil, then the ratio of the electric fields $\mathrm{E}_{\text {air }} / \mathrm{E}_{\text {oil }}$ will be:
A) greater than 1
B) less than 1
C) 0
D) 1
E) None of the other answers

Sec\# Capacitance - Capacitor with a Dielectric
Grade\# 62
Q17.
Three identical capacitors are shown in Figure 8. A potential difference $\mathrm{V}=10 \mathrm{kV}$ is established when the switch S is closed. Find the value of the capacitance C if the charge that passes through the meter M is 0.20 C .

Fig\#

A) $6.7 \mu \mathrm{~F}$
B) $20 \mu \mathrm{~F}$
C) $1.6 \mu \mathrm{~F}$
D) $13 \mu \mathrm{~F}$
E) $2.5 \mu \mathrm{~F}$

Sec\# Capacitance - Capacitors in Parallel and in Series
Grade\# 60
Q18.
Consider the circuit of identical capacitors shown in Figure 9. A potential difference of $2.0 \times 10^{2} \mathrm{~V}$ is applied by the battery V. Calculate the energy stored in the system if the capacitance of each capacitor is $50 \mu \mathrm{~F}$.

Phys102	Second Major-122	Zero Version
Coordinator: Sunaidi	Sunday, April 21, 2013	Page: 8

Fig\#

A) 3.0 J
B) 4.0 J
C) 6.0 J
D) 1.0 J
E) 7.0 J

Sec\# Capacitance - Energy stored in an Electric Field
Grade\# 55
Q19.
A cylindrical resistor of radius 2.5 mm and length 4.0 cm is made of a material that has a resistivity of $3.5 \times 10^{-5} \Omega$. m . What is the potential difference when the energy dissipation rate in the resistor is 1.0 W ?
A) 0.27 V
B) 1.8 V
C) 2.2 V
D) 0.17 V
E) 1.1 V

Sec\# Current and Resistance - Power in Electric Circuits

Grade\# 60

Q20.
A 1.0-m-long wire has a resistance equal to 0.30Ω. A second wire made of identical material has a length of 2.0 m and a mass equal to the mass of the first wire. What is the resistance of the second wire?
A) 1.2Ω
B) 1.0Ω
C) 3.4Ω
D) 4.3Ω
E) 5.6Ω

Phys102	Second Major-122	Zero Version
Coordinator: Sunaidi	Sunday, April 21, 2013	Page: 9

Sec\# Current and Resistance - Ohm's Law
Grade\# 46

Test Expected Average $=52$
$F=k \frac{q_{1} q_{2}}{r^{2}}$
$\mathrm{U}=-\vec{p} \cdot \vec{E}$
$\vec{\tau}=\vec{p} \times \vec{E}$
$\Phi=\int_{\text {surface }} \vec{E} \cdot d \vec{A}$
$\Phi_{c}=\oint_{j} \vec{E} \cdot d \vec{A}=\frac{q_{i n}}{\varepsilon_{0}}$
$E=\frac{\sigma}{2 \varepsilon_{o}}$
$E=\frac{\sigma}{\varepsilon_{o}}$
$E=k \frac{q}{r^{2}}$
$E=k \frac{q}{R^{3}} r$
$E=\frac{2 k \lambda}{r}$
$\Delta V=V_{B}-V_{A}=-\int_{A}^{B} \vec{E} . d \vec{S}=\frac{\Delta U}{q_{0}}$
$U=k \frac{q}{r}$
$E_{x}=-\frac{\partial V}{\partial x}, \quad E_{y}=-\frac{\partial V}{\partial y}, \quad E_{z}=-\frac{\partial V}{\partial z}$
V

Constants:

$$
\begin{aligned}
& \mathrm{k}=9.00 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2} \\
& \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2} \\
& \mathrm{e}=1.60 \times 10^{-19} \mathrm{C} \\
& \mathrm{~m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \\
& \mathrm{~m}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg} \\
& \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mu=\text { micro }=10^{-6} \\
& \mathrm{n}=\text { nano }=10^{-9} \\
& \mathrm{p}=\text { pico }=10^{-12}
\end{aligned}
$$

