Phys102	Second Major-101	Zero Version
Coordinator: Al-Shukri	Sunday, December 19, 2010	Page: 1

Q1.

Three particles are fixed as shown in Figure 1. If $|q| = 2.0 \,\mu\text{C}$, what is the net electrostatic force on the particle at the origin? [\hat{i} and \hat{j} are unit vectors along the +x and +y axes, respectively]

Fig#

A) $(9.0 \times 10^{-3} \text{ i} - 9.0 \times 10^{-3} \text{ j}) \text{ N}$ B) $(1.8 \times 10^{-2} \text{ i} + 1.8 \times 10^{-2} \text{ j}) \text{ N}$

C) $(-3.0 \times 10^{-2} \text{ i} + 3.0 \times 10^{-2} \text{ j}) \text{ N}$

D) $(6.4 \times 10^{-3} \hat{i} - 6.4 \times 10^{-3} \hat{j}) N$

E) $(4.6 \times 10^{-2} \ \hat{i} - 4.6 \times 10^{-2} \ \hat{j}) N$

Q2.

Two particles are held fixed on an x-axis. Particle 1 of charge $q_1 = -2.1 \times 10^{-8}$ C is at x = 20 cm and particle 2 of charge $q_2 = -4.00q_1$ is at x = 70 cm. At what coordinate on the x-axis is the net electric field produced by the particles equal to zero?

- A) -30 cm
- B) +30 cm
- C) -25 cm
- D) +25 cm
- E) -20 cm

Q3.

An electric dipole consists of charges -6.0×10^{-6} C and $+6.0 \times 10^{-6}$ C separated by a distance of 3.0 mm. Its dipole moment is directed along the +x-axis. This dipole is placed in an electric field of magnitude 46 N/C that makes an angle of 60° with the +x-axis. What is the magnitude of the torque exerted by the electric field on the dipole?

A) 7.2×10^{-7} N.m.

- B) 8.3×10^{-7} N.m.
- C) 0 because the net charge is 0.
- D) 9.8×10^{-7} N.m.
- E) 3.9×10^{-7} N.m.

Phys102	Second Major-101	Zero Version
Coordinator: Al-Shukri	Sunday, December 19, 2010	Page: 2

Q4.

A charged oil drop with a mass of 2×10^{-4} kg is held suspended in equilibrium in the air by a downward electric field of 300 N/C. The charge on the drop is:

A) -6.5×10^{-6} C B) $+1.5 \times 10^{-6}$ C C) $+6.5 \times 10^{-6}$ C D) -1.5×10^{-6} C E) -4.5×10^{-6} C

Q5.

A charge of 0.80×10^{-9} C is placed at the center of a cube that measures 4.0 m along each edge. What is the electric flux through any two faces of the cube?

A) $30 \text{ N} \cdot \text{m}^2/\text{C}$ B) $45 \text{ N} \cdot \text{m}^2/\text{C}$ C) $90 \text{ N} \cdot \text{m}^2/\text{C}$ D) $23 \text{ N} \cdot \text{m}^2/\text{C}$ E) $64 \text{ N} \cdot \text{m}^2/\text{C}$

Q6.

A positive charge $Q = +5.0 \times 10^{-9}$ C is placed on a conducting spherical shell with inner radius $R_1 = 5.0$ mm and outer radius $R_2 = 6.0$ mm. A point charge $q = +1.0 \times 10^{-9}$ C is placed at the center of the shell. The surface charge density on the outer surface of the conducting shell is:

A) $+1.3 \times 10^{-5} \text{ C/m}^2$ B) $-1.3 \times 10^{-5} \text{ C/m}^2$ C) $+2.1 \times 10^{-5} \text{ C/m}^2$ D) $-2.1 \times 10^{-5} \text{ C/m}^2$ E) $+5.1 \times 10^{-5} \text{ C/m}^2$

Q7.

A long conducting solid cylinder, with radius R = 10 cm, has a uniform charge density $\lambda = 7.0 \times 10^{-9}$ C/m. Determine the magnitude of the electric field at a distance r = 12 cm from the axis of the cylinder.

A)	$1.1 \times 10^{3} \text{ N/C}$
B)	0.55×10^3 N/C
C)	$14 \times 10^3 \text{ N/C}$
D)	$7.3 \times 10^3 \text{ N/C}$
E)	$34 \times 10^3 \text{ N/C}$

Q8.

Consider two non-conducting large parallel plates as shown in Figure 2. What is the magnitude of net electric field at point A?

Fig#

+7.0 C/m² -5.0 C/m²
A

$$x - 2$$
 mm
A) 1.1 ×10¹¹ N/C
B) 15 × 10¹¹ N/C
C) 2.3 × 10¹¹ N/C
D) 6.5 × 10¹¹ N/C

09.

1

A non-conducting sphere of radius R = 7.0 cm carries a charge Q = 5.0×10^{-3} C distributed uniformly throughout its volume. At what distance within the sphere, measured from the center of the sphere does the electric field reach a value equal to half its maximum value?

A) 3.5 cm

E) $5.3 \times 10^{11} \text{ N/C}$

B) 1.5 cm

- C) 5.3 cm
- D) 2.5 cm
- E) 8.1 cm

Q10.

A system consists of a negatively-charged particle moving in an electric field. When the charged particle moves in the direction of the electric field

A) The electric potential energy increases.

- B) The work done by the electric force on the particle is positive.
- C) The electric potential energy decreases.
- D) The kinetic energy of the particle increases.
- E) The particle acceleration is in the direction of the electric field.

O11.

If the electric field has magnitude of 200 V/m and makes an angle of 30° with the positive xaxis, what is the potential difference $V_{B}-V_{A}$ between point A(0, 0) and point B(3.0 m, 0 m)?

A) -5	520 V
---------	-------

B) -350 V

- C) + 520 V
- D) + 350 V
- E) -150 V

Q12.

Three point charges $-2.00 \ \mu\text{C}$, Q, and $+6.00 \ \mu\text{C}$ are fixed along the x-axis as shown in Figure 3. If the net electric potential at point P due to these charges is Zero, the charge Q is:

Fig#

A) -2.83 μC
B) +2.83 μC
C) +5.11 μC
D) -5.11 μC
E) +8.18 μC

Q13.

A +60 × 10⁻⁶ C charge is held fixed at the origin. If a +10 × 10⁻⁶ C charge is released from rest at a point x = 40 cm, what is its kinetic energy the instant it passes the point x = 70 cm?

A) 5.8 J

B) 7.4 J

C) 9.3 J

D) 6.9 J

E) 2.5 J

Q14.

A solid conducting sphere of radius 5.0 cm has a charge 0.25×10^{-9} C distributed uniformly on its surface. If point A is located at the center of the sphere and point B is 15 cm from the center of the sphere, what is the magnitude of the electric potential difference between these two points?

A) 30 V
B) 23 V
C) 15 V
D) 45 V
E) 60 V

Q15.

In Figure 4, four charges are fixed at the corners of a square whose sides are of length 2d. The work done by an external agent to bring a fifth charge, Q, from infinity to the center of the square as shown in the figure is: (assume the potential at infinity to be zero)

Fig#

Phys102	Second Major-101	Zero Version
Coordinator: Al-Shukri	Sunday, December 19, 2010	Page: 5

A) - 1.4kqQ/d.
B) + 2.8kqQ/d.
C) + 1.4kqQ/d.
D) - 2.8kqQ/d.
E) + 3.4kqQ/d.

Q16.

The equivalent capacitance between points a and b in the combination of capacitors connected as shown in Figure 5 is:

Fig#

- C) 1.5 µF.
- D) 0.5 µF.
- E) 3.0 μF.

Q17.

A 2- μ F and a 1- μ F capacitor are connected in series and a potential difference is applied across the combination. The 2- μ F capacitor has:

A) half the potential difference of the $1-\mu F$ capacitor

- B) half the charge of the $1-\mu F$ capacitor
- C) twice the potential difference of the 1- μ F capacitor
- D) twice the charge of the $1-\mu F$ capacitor
- E) none of the other answers

Q18.

Capacitor C_1 is connected to a battery and charged to 4.0×10^{-8} C. It is then disconnected from the battery and connected to two capacitors C_2 and C_3 , as shown in Figure 6. The charge on the positive plate of C_1 is 1.0×10^{-8} C. The charges on the positive plates of C_2 and C_3 are, respectively:

Fig#

Q19.

To store a total of 0.040 J of energy in the two identical capacitors shown in Figure 7, each should have a capacitance of:

Fig#

E) 2.0 μF

Q20.

A parallel-plate capacitor, of capacitance 1.0×10^{-9} F, with air between the plates, is charged by a battery to a potential difference of 12 V. The battery is then disconnected and a dielectric material with dielectric constant = 4.0 fills the space between the plates. The resulting potential difference, in volts, between the plates is:

A) 3.0 B) 12

- C) 4.0
- D) 10
- E) 5.0

Physics 102 Formula sheet for Second Major

 \hat{i} , \hat{j} and \hat{k} are unit vectors along the positive directions of x-axis, y-axis and z-axis respectively.

$\mathbf{F} = \frac{\mathbf{k}q_1q_2}{\mathbf{r}^2} \text{,} \mathbf{F} = q_0 \; \mathbf{E}$	$\mathbf{v} = \mathbf{v}_{o} + \mathbf{at}$
$\Phi = \int_{\text{Surface}} \vec{E} \cdot d\vec{A} , E = \frac{kq}{r^2}$	$x - x_{o} = v_{o}t + \frac{1}{2}at^{2}$
$E = \frac{kQ}{R^3}r$, $E = \frac{2k\lambda}{r}$	$v^{2} = v_{o}^{2} + 2a(x - x_{o})$
$ \phi_{c} = \oint \vec{E} \cdot d\vec{A} = \frac{q_{in}}{\epsilon_{c}}; E = \frac{\sigma}{2\epsilon}; E = \frac{\sigma}{\epsilon} $	$\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N.m}^2$
$E = \frac{\sigma}{2\epsilon}$, $E = \frac{\sigma}{\epsilon}$	$k = 9.0 \times 10^{9} \text{ N.m}^{2}/\text{C}^{2}$ e = -1.6 × 10 ⁻¹⁹ C
$V = \frac{kQ}{r} , W = -\Delta U$	$m_{e} = 9.11 \times 10^{-31} \text{ kg}$ $m_{p} = 1.67 \times 10^{-27} \text{ kg}$
$\Delta V = V_{\rm B} - V_{\rm A} = -\int_{\rm B}^{\rm B} \vec{E} . d\vec{s} = \frac{\Delta U}{q}$	$1 \text{ eV} = 1.6 \times 10^{19} \text{ J}$ g = 9.8 m/s ²
$E_x = -\frac{\partial V}{\partial x}, E_y = -\frac{\partial V}{\partial v}, E_z = -\frac{\partial V}{\partial z}$	micro (μ) = 10 ⁻⁶ nano (n) = 10 ⁻⁹
$U = \frac{kq_1q_2}{r_{12}}$	pico (p) = 10^{-12}
$C = \frac{Q}{V}$, $C_o = \frac{\varepsilon_o A}{d}$, $C = 4\pi \varepsilon_o \frac{ab}{b-a}$,	
$U = \frac{1}{2}CV^2$, $u = \frac{1}{2}\varepsilon_o E^2$, $C = \kappa C_0$,	