Q1.
Three particles are fixed as shown in Figure 1. If $|q|=2.0 \mu \mathrm{C}$, what is the net electrostatic force on the particle at the origin? [\hat{i} and \hat{j} are unit vectors along the $+x$ and $+y$ axes, respectively]

Fig\#

A) $\left(9.0 \times 10^{-3} \hat{\mathrm{i}}-9.0 \times 10^{-3} \hat{\mathrm{j}}\right) \mathrm{N}$
B) $\left(1.8 \times 10^{-2} \hat{\mathrm{i}}+1.8 \times 10^{-2} \hat{\mathrm{j}}\right) \mathrm{N}$
C) $\left(-3.0 \times 10^{-2} \hat{i}+3.0 \times 10^{-2} \hat{j}\right) \mathrm{N}$
D) $\left(6.4 \times 10^{-3} \hat{i}-6.4 \times 10^{-3} \hat{j}\right) \mathrm{N}$
E) $\left(4.6 \times 10^{-2} \hat{\mathrm{i}}-4.6 \times 10^{-2} \hat{\mathrm{j}}\right) \mathrm{N}$

Q2.
Two particles are held fixed on an x -axis. Particle 1 of charge $\mathrm{q}_{1}=-2.1 \times 10^{-8} \mathrm{C}$ is at $\mathrm{x}=20$ cm and particle 2 of charge $\mathrm{q}_{2}=-4.00 \mathrm{q}_{1}$ is at $\mathrm{x}=70 \mathrm{~cm}$. At what coordinate on the x -axis is the net electric field produced by the particles equal to zero?
A) -30 cm
B) +30 cm
C) -25 cm
D) +25 cm
E) -20 cm

Q3.
An electric dipole consists of charges $-6.0 \times 10^{-6} \mathrm{C}$ and $+6.0 \times 10^{-6} \mathrm{C}$ separated by a distance of 3.0 mm . Its dipole moment is directed along the +x -axis. This dipole is placed in an electric field of magnitude $46 \mathrm{~N} / \mathrm{C}$ that makes an angle of 60° with the +x -axis. What is the magnitude of the torque exerted by the electric field on the dipole?
A) $7.2 \times 10^{-7} \mathrm{~N} . \mathrm{m}$.
B) $8.3 \times 10^{-7} \mathrm{~N} . \mathrm{m}$.
C) 0 because the net charge is 0 .
D) $9.8 \times 10^{-7} \mathrm{~N} . \mathrm{m}$.
E) $3.9 \times 10^{-7} \mathrm{~N} . \mathrm{m}$.

Q4.

A charged oil drop with a mass of $2 \times 10^{-4} \mathrm{~kg}$ is held suspended in equilibrium in the air by a downward electric field of $300 \mathrm{~N} / \mathrm{C}$. The charge on the drop is:
A) $-6.5 \times 10^{-6} \mathrm{C}$
B) $+1.5 \times 10^{-6} \mathrm{C}$
C) $+6.5 \times 10^{-6} \mathrm{C}$
D) $-1.5 \times 10^{-6} \mathrm{C}$
E) $-4.5 \times 10^{-6} \mathrm{C}$

Q5.

A charge of $0.80 \times 10^{-9} \mathrm{C}$ is placed at the center of a cube that measures 4.0 m along each edge. What is the electric flux through any two faces of the cube?
A) $30 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B) $45 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C) $90 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D) $23 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E) $64 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$

Q6.

A positive charge $\mathrm{Q}=+5.0 \times 10^{-9} \mathrm{C}$ is placed on a conducting spherical shell with inner radius $R_{1}=5.0 \mathrm{~mm}$ and outer radius $\mathrm{R}_{2}=6.0 \mathrm{~mm}$. A point charge $\mathrm{q}=+1.0 \times 10^{-9} \mathrm{C}$ is placed at the center of the shell. The surface charge density on the outer surface of the conducting shell is:
A) $+1.3 \times 10^{-5} \mathrm{C} / \mathrm{m}^{2}$
B) $-1.3 \times 10^{-5} \mathrm{C} / \mathrm{m}^{2}$
C) $+2.1 \times 10^{-5} \mathrm{C} / \mathrm{m}^{2}$
D) $-2.1 \times 10^{-5} \mathrm{C} / \mathrm{m}^{2}$
E) $+5.1 \times 10^{-5} \mathrm{C} / \mathrm{m}^{2}$

Q7.
A long conducting solid cylinder, with radius $\mathrm{R}=10 \mathrm{~cm}$, has a uniform charge density $\lambda=$ $7.0 \times 10^{-9} \mathrm{C} / \mathrm{m}$. Determine the magnitude of the electric field at a distance $\mathrm{r}=12 \mathrm{~cm}$ from the axis of the cylinder.
A) $1.1 \times 10^{3} \mathrm{~N} / \mathrm{C}$
B) $0.55 \times 10^{3} \mathrm{~N} / \mathrm{C}$
C) $14 \times 10^{3} \mathrm{~N} / \mathrm{C}$
D) $7.3 \times 10^{3} \mathrm{~N} / \mathrm{C}$
E) $34 \times 10^{3} \mathrm{~N} / \mathrm{C}$

Q8.

Consider two non-conducting large parallel plates as shown in Figure 2. What is the magnitude of net electric field at point A ?

Fig\#

A) $1.1 \times 10^{11} \mathrm{~N} / \mathrm{C}$
B) $15 \times 10^{11} \mathrm{~N} / \mathrm{C}$
C) $2.3 \times 10^{11} \mathrm{~N} / \mathrm{C}$
D) $6.5 \times 10^{11} \mathrm{~N} / \mathrm{C}$
E) $5.3 \times 10^{11} \mathrm{~N} / \mathrm{C}$

Q9.
A non-conducting sphere of radius $\mathrm{R}=7.0 \mathrm{~cm}$ carries a charge $\mathrm{Q}=5.0 \times 10^{-3} \mathrm{C}$ distributed uniformly throughout its volume. At what distance within the sphere, measured from the center of the sphere does the electric field reach a value equal to half its maximum value?
A) 3.5 cm
B) 1.5 cm
C) 5.3 cm
D) 2.5 cm
E) 8.1 cm

Q10.
A system consists of a negatively-charged particle moving in an electric field. When the charged particle moves in the direction of the electric field
A) The electric potential energy increases.
B) The work done by the electric force on the particle is positive.
C) The electric potential energy decreases.
D) The kinetic energy of the particle increases.
E) The particle acceleration is in the direction of the electric field.

Q11.

If the electric field has magnitude of $200 \mathrm{~V} / \mathrm{m}$ and makes an angle of 30° with the positive x axis, what is the potential difference $V_{B}-V_{A}$ between point $A(0,0)$ and point $B(3.0 \mathrm{~m}, 0 \mathrm{~m})$?
A) -520 V
B) -350 V
C) +520 V
D) +350 V
E) -150 V

Q12.
Three point charges $-2.00 \mu \mathrm{C}, \mathrm{Q}$, and $+6.00 \mu \mathrm{C}$ are fixed along the x -axis as shown in Figure 3. If the net electric potential at point P due to these charges is Zero, the charge Q is:

Phys102	Second Major-101	Zero Version
Coordinator: Al-Shukri	Sunday, December 19, 2010	Page: 4

Fig\#

A) $-2.83 \mu \mathrm{C}$
B) $+2.83 \mu \mathrm{C}$
C) $+5.11 \mu \mathrm{C}$
D) $-5.11 \mu \mathrm{C}$
E) $+8.18 \mu \mathrm{C}$

Q13.
$\mathrm{A}+60 \times 10^{-6} \mathrm{C}$ charge is held fixed at the origin. If a $+10 \times 10^{-6} \mathrm{C}$ charge is released from rest at a point $\mathrm{x}=40 \mathrm{~cm}$, what is its kinetic energy the instant it passes the point $\mathrm{x}=70 \mathrm{~cm}$?
A) 5.8 J
B) 7.4 J
C) 9.3 J
D) 6.9 J
E) 2.5 J

Q14.
A solid conducting sphere of radius 5.0 cm has a charge $0.25 \times 10^{-9} \mathrm{C}$ distributed uniformly on its surface. If point A is located at the center of the sphere and point B is 15 cm from the center of the sphere, what is the magnitude of the electric potential difference between these two points?
A) 30 V
B) 23 V
C) 15 V
D) 45 V
E) 60 V

Q15.

In Figure 4, four charges are fixed at the corners of a square whose sides are of length 2d. The work done by an external agent to bring a fifth charge, Q , from infinity to the center of the square as shown in the figure is: (assume the potential at infinity to be zero)

Fig\#

Phys102	Second Major-101	Zero Version
Coordinator: Al-Shukri	Sunday, December 19,2010	Page: 5

A) $-1.4 \mathrm{kqQ} / \mathrm{d}$.
B) $+2.8 \mathrm{kqQ} / \mathrm{d}$.
C) $+1.4 \mathrm{kqQ} / \mathrm{d}$.
D) $-2.8 \mathrm{kqQ} / \mathrm{d}$.
E) $+3.4 \mathrm{kqQ} / \mathrm{d}$.

Q16.
The equivalent capacitance between points a and b in the combination of capacitors connected as shown in Figure 5 is:

Fig\#

A) $1.0 \mu \mathrm{~F}$.
B) $2.0 \mu \mathrm{~F}$.
C) $1.5 \mu \mathrm{~F}$.
D) $0.5 \mu \mathrm{~F}$.
E) $3.0 \mu \mathrm{~F}$.

Q17.
A $2-\mu \mathrm{F}$ and a $1-\mu \mathrm{F}$ capacitor are connected in series and a potential difference is applied across the combination. The $2-\mu \mathrm{F}$ capacitor has:
A) half the potential difference of the $1-\mu \mathrm{F}$ capacitor
B) half the charge of the $1-\mu \mathrm{F}$ capacitor
C) twice the potential difference of the $1-\mu \mathrm{F}$ capacitor
D) twice the charge of the $1-\mu \mathrm{F}$ capacitor
E) none of the other answers

Q18.

Capacitor C_{1} is connected to a battery and charged to $4.0 \times 10^{-8} \mathrm{C}$. It is then disconnected from the battery and connected to two capacitors C_{2} and C_{3}, as shown in Figure 6. The charge on the positive plate of C_{1} is $1.0 \times 10^{-8} \mathrm{C}$. The charges on the positive plates of C_{2} and C_{3} are, respectively:

Fig\#

A) $\mathrm{q}_{2}=3.0 \times 10^{-8} \mathrm{C}$ and $\mathrm{q}_{3}=3.0 \times 10^{-8} \mathrm{C}$
B) $\mathrm{q}_{2}=4.0 \times 10^{-8} \mathrm{C}$ and $\mathrm{q}_{3}=4.0 \times 10^{-8} \mathrm{C}$
C) $\mathrm{q}_{2}=3.0 \times 10^{-8} \mathrm{C}$ and $\mathrm{q}_{3}=1.0 \times 10^{-8} \mathrm{C}$
D) $\mathrm{q}_{2}=2.0 \times 10^{-8} \mathrm{C}$ and $\mathrm{q}_{3}=2.0 \times 10^{-8} \mathrm{C}$
E) $\mathrm{q}_{2}=1.0 \times 10^{-8} \mathrm{C}$ and $\mathrm{q}_{3}=1.0 \times 10^{-8} \mathrm{C}$

Q19.
To store a total of 0.040 J of energy in the two identical capacitors shown in Figure 7, each should have a capacitance of:

Fig\#

A) $1.0 \mu \mathrm{~F}$
B) $0.50 \mu \mathrm{~F}$
C) $0.10 \mu \mathrm{~F}$
D) $1.5 \mu \mathrm{~F}$
E) $2.0 \mu \mathrm{~F}$

Q20.
A parallel-plate capacitor, of capacitance $1.0 \times 10^{-9} \mathrm{~F}$, with air between the plates, is charged by a battery to a potential difference of 12 V . The battery is then disconnected and a dielectric material with dielectric constant $=4.0$ fills the space between the plates. The resulting potential difference, in volts, between the plates is:
A) 3.0
B) 12
C) 4.0
D) 10
E) 5.0

Physics 102
Formula sheet for Second Major
\hat{i}, \hat{j} and \hat{k} are unit vectors along the positive directions of x -axis, y -axis and z -axis respectively.

$$
\begin{aligned}
& \mathrm{F}=\frac{\mathrm{kq}_{1} \mathrm{q}_{2}}{\mathrm{r}^{2}}, \quad \mathrm{~F}=\mathrm{q}_{0} \mathrm{E} \\
& \Phi=\int_{\text {Surface }} \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~A}}, \quad \mathrm{E}=\frac{\mathrm{kq}}{\mathrm{r}^{2}} \\
& \mathrm{E}=\frac{\mathrm{kQ}}{\mathrm{R}^{3}} \mathrm{r} \quad, \quad \mathrm{E}=\frac{2 \mathrm{k} \lambda}{\mathrm{r}} \\
& \varphi_{\mathrm{c}}=\oint \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~A}}=\frac{\mathrm{q}_{\text {in }}}{\varepsilon_{0}} ; \quad E=\frac{\sigma}{2 \varepsilon_{o}} ; \quad E=\frac{\sigma}{\varepsilon_{o}} \\
& \mathrm{E}=\frac{\sigma}{2 \varepsilon_{\mathrm{o}}} \quad, \quad \mathrm{E}=\frac{\sigma}{\varepsilon_{\mathrm{o}}} \\
& \mathrm{~V}=\frac{\mathrm{kQ}}{\mathrm{r}}, \quad \mathrm{~W}=-\Delta \mathrm{U} \\
& \Delta \mathrm{~V}=\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}=-\int_{\mathrm{A}}^{\mathrm{B}} \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~s}}=\frac{\Delta \mathrm{U}}{\mathrm{q}_{0}} \\
& E_{x}=-\frac{\partial V}{\partial x}, E_{y}=-\frac{\partial V}{\partial y}, E_{z}=-\frac{\partial V}{\partial z} \\
& U=\frac{\mathrm{kq}_{1} \mathrm{q}_{2}}{\mathrm{r}_{12}} \\
& \mathrm{C}=\frac{\mathrm{Q}}{\mathrm{~V}}, \quad \mathrm{C}_{\mathrm{o}}=\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}, \quad C=4 \pi \varepsilon_{0} \frac{a b}{b-a}, \\
& \mathrm{U}=\frac{1}{2} \mathrm{CV}^{2}, \mathrm{u}=\frac{1}{2} \varepsilon_{0} E^{2}, \quad \mathrm{C}=\kappa \mathrm{C}_{0}, \\
& \mathrm{v}=\mathrm{v}_{\mathrm{o}}+\mathrm{at} \\
& \mathrm{x}-\mathrm{x}_{\mathrm{o}}=\mathrm{v}_{\mathrm{o}} \mathrm{t}+\frac{1}{2} \mathrm{at}^{2} \\
& \mathrm{v}^{2}=\mathrm{v}_{\mathrm{o}}^{2}+2 \mathrm{a}\left(\mathrm{x}-\mathrm{x}_{\mathrm{o}}\right) \\
& \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2} \\
& \mathrm{k}=9.0 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2} \\
& \mathrm{e}=-1.6 \times 10^{-19} \mathrm{C} \\
& \mathrm{~m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \\
& \mathrm{~m}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg} \\
& 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J} \\
& \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& \begin{array}{l}
\operatorname{micro}(\mu)=10^{-6} \\
\text { nano }(\mathrm{n})=10^{-9} \\
\text { pico }(\mathrm{p})=10^{-12}
\end{array}
\end{aligned}
$$

