| Phys102                   | Second Major-083           | Zero Version |
|---------------------------|----------------------------|--------------|
| Coordinator: Dr. A. Naqvi | Wednesday, August 19, 2009 | Page: 1      |

### Q1.

As shown in Fig. 1, a point charge  $q_1 = +\mathbf{Q}$  is placed at the center of a square, and a second point charge  $q_2 = -\mathbf{Q}$  is placed at the upper-left corner. It is observed that an electrostatic force of 2.0 N acts on the positive charge at the center. What is the magnitude of the force that acts on the center charge if a third charge  $q_3 = -\mathbf{Q}$  is placed at the lower-left corner as shown?

A) 2.8 N
B) 2.0 N
C) 4.0 N
D) 5.3 N
E) 0.0 N

Sec# Electric fields - Coulomb's Law Grade# 50

## Q2.

A point charge Q = -500 nC and two unknown point charges ,  $q_1$  and  $q_2$  , are placed as shown in Fig. 2. The net electric field at the origin O , due to charges Q,  $q_1$  and  $q_2$ , is equal to zero. The charges  $q_1$  and  $q_2$ , respectively, are:

A) + 131 nC, -106 nC B) + 210 nC, -206 nC C) -210 nC, + 106 nC D) + 270 nC, -301 nC E) - 100 nC, + 100nC

Sec# Electric fields - The Electric Field Grade# 50

## Q3.

A particle (  $m = 20 \text{ mg}, q = -5.0 \mu\text{C}$ ) moves in a uniform electric field **E**= ( 60 N/C) **i**. At t= 0, the particle has a velocity **v** = (30 m/s) **i**. Determine the velocity of the particle at t = 4.0 s.

#### A) (-30 m/s)i

B) (-50 m/s)i
C) (5.0 m/s)i
D) (15 m/s)i
E) (-15 m/s)i

Sec# Electric fields - Motion of charge in unform electric field Grade# 50

### Q4.

An electric dipole of dipole moment  $\mathbf{p} = (5 \times 10^{-10} \text{ C.m}) \mathbf{i}$  is placed in an electric field  $\mathbf{E} = (2 \times 10^6 \text{ N/C}) \mathbf{i} + (2 \times 10^6 \text{ N/C}) \mathbf{j}$ . What is magnitude of the maximum torque experienced by the dipole?

| Phys102                   | Second Major-083           | Zero Version |
|---------------------------|----------------------------|--------------|
| Coordinator: Dr. A. Naqvi | Wednesday, August 19, 2009 | Page: 2      |

A)  $1.00 \times 10^{-3}$  N.m B)  $1.40 \times 10^{-3}$  N.m C)  $2.80 \times 10^{-3}$  N.m D)  $2.00 \times 10^{-3}$  N.m E)  $3.00 \times 10^{-3}$  N.m

Sec# Electric fields - Motion of charge in unform electric field Grade# 50

| Q5.  |  |
|------|--|
| ~~ · |  |

The flux of an electric field  $\mathbf{E} = (24\text{N/C})\mathbf{i} + (30\text{N/C})\mathbf{j} + (16\text{N/C})\mathbf{k}$  through a 2.0 m<sup>2</sup> portion of the yz plane is:

A) 48 N.m<sup>2</sup>/C
B) 34 N.m<sup>2</sup>/C
C) 42 N.m<sup>2</sup>/C
D) 32 N.m<sup>2</sup>/C
E) 60 N.m<sup>2</sup>/C

Sec# Gauss's law - Electric Flux and Gauss' Law Grade# 50

Q6.

Consider two large oppositely charged parallel metal plates, placed close to each other. The plates are square with sides L and carry charges Q and -Q. The magnitude of the electric field in the region between the plates is:

| A) | E=   | $\frac{Q}{\varepsilon_{\rm O}L^2}$  |
|----|------|-------------------------------------|
| B) | E=   | $\frac{2Q}{\varepsilon_{\rm O}L^2}$ |
| C) | E=   | $\frac{4Q}{\varepsilon_{\rm O}L^2}$ |
| D) | E= - | $\frac{Q}{2\varepsilon_0 L^2}$      |
| E) | E= ( | )                                   |

Sec# Gauss's law - Application to Charged Insulators Grade# 50

# Q7.

A non-conducting sphere of radius R = 10 cm carries a charge density

 $\rho = 10^{-9} \text{ C/m}^3$  distributed uniformly throughout its volume. At what distance within the sphere, measured from the center of the sphere, the magnitude of the electric field is E = 1.32 N/m?

| Phys102                   | Second Major-083           | Zero Version |
|---------------------------|----------------------------|--------------|
| Coordinator: Dr. A. Naqvi | Wednesday, August 19, 2009 | Page: 3      |

A) 3.50 cm
B) 7.11 cm
C) 5.53 cm
D) (57

D) 6.57 cm

E) 8.99 cm

Sec# Gauss's law - Application to Charged Insulators Grade# 50

#### Q8.

An infinitely long non-conducting cylinder of radius R = 2.00 cm carries a uniform charge density  $\rho = 18.0 \,\mu\text{C}/\text{m}^3$ . Calculate the electric field at distance r = 1.00 cm from the axis of the cylinder?

# A) $1.02 \times 10^4$ N/C B) $5.10 \times 10^3$ N/C

C)  $2.01 \times 10^4$  N/C D)  $2.51 \times 10^3$  N/C E)  $3.04 \times 10^3$  N/C

Sec# Gauss's law - Application to Charged Insulators Grade# 50

### Q9.

A proton with a speed of  $2.00 \times 10^5$  m/s enters a region of space in which source charges have created an electric potential. What is the proton's speed after it has moved through a potential difference of + 100 V?

### A) 1.44 x 10<sup>5</sup> m/s

B) 1.78 x 10<sup>5</sup> m/s
C) 2.78 x 10<sup>5</sup> m/s
D) 2.21 x 10<sup>5</sup> m/s
E) 1.08 x 10<sup>5</sup> m/s

Sec# Electric Potential - Electric Potential and Potential Difference Grade# 50

#### Q10.

The electric potential at points in xy plane is given by  $V=2x^2y+32$ . What is the electric field at ( 2.0 m, 3.0 m)

#### A) -24 i-8.0 j B) 24 i-8.0 j

C) 3.0 i

- D) 5 + 40
- D) 5 i+4.0 j
- E) 8i+24 j

Sec# Electric Potential - Electric Potential and Potential Energy Grade# 50

| Phys102                   | Second Major-083           | Zero Version |
|---------------------------|----------------------------|--------------|
| Coordinator: Dr. A. Naqvi | Wednesday, August 19, 2009 | Page: 4      |

## Q11.

Four equal positive charges, each 3.2  $\mu$ C, are held at the four corners of a square of edge 0.50 m. How much work is required to move one of those charges far away from other three?

A) - 0.50 J B) - 0.89 J C) 0.50 J D) +0.89 J E) 1.0 J

Sec# Electric Potential - Potential of a Charged Conductor Grade# 50

# Q12.

An electric field of 100 V/m strength is often observed near the surface of earth. What would be the electric potential at a point on the earth surface? (Radius of Earth=  $6.37 \times 10^6$  m)

A)  $6.37 \times 10^8 \text{ V}$ B)  $1.23 \times 10^9 \text{ V}$ C)  $8.18 \times 10^8 \text{ V}$ D)  $8.18 \times 10^9 \text{ V}$ E) 100 V

Sec# Electric Potential - Electric Potential and Potential Energy Grade# 50

# Q13.

Each of the two  $25-\mu F$  capacitors, as shown in Fig. 3, is initially uncharged. How many Coulombs of charge pass through ammeter A after the switch S is closed for long time?

### A) 0.20 C

B) 0.10 C

C) 0.40 C

D) 0.80 C

E) Zero C

Sec# Capacitance and Dielectrics - Combinations of Capacitors Grade# 50

### Q14.

Each of the two 25- $\mu$ F capacitors, as shown in Fig. 4, is initially uncharged. How much energy is stored in the two capacitors after the switch S is closed for long time?

### A) 100 J

B) 200 J

- C) 50 J
- D) 300 J
- E) 80 J

Sec# Capacitance and Dielectrics - Energy Stored in a Charged Capacitor

| Phys102                   | Second Major-083           | Zero Version |
|---------------------------|----------------------------|--------------|
| Coordinator: Dr. A. Naqvi | Wednesday, August 19, 2009 | Page: 5      |

### Grade# 50

# Q15.

The plates of a parallel plate capacitor are connected to a battery. If the distance between the plates is halved, the energy stored in the capacitor:

### A) Increases two-fold

- B) Increases four-fold
- C) Remains constant
- D) Reduces to one-half
- E) Reduces to one-fourth

Sec# Capacitance and Dielectrics - Calculation of Capacitance Grade# 50

# Q16.

A parallel-plate capacitor has a capacitance of 10  $\mu$ F and is charged with a 20 V power supply. The power supply is then removed and a dielectric of dielectric constant 4 is filled in the space between the plates. The voltage across the capacitor with dielectric is:

A) 5 V

B) 20 V

C) 10 V

D) 80 V

E) 50 V

Sec# Capacitance and Dielectrics - Capacitors with Dielectrics Grade# 50

## Q17.

A 10-ohm resistor has a constant current. If 1200 C of charge flow through it in 4 minutes what is the value of the current?

# A) 5.0 A

B) 3.0 A

C) 11 A

- D) 15 A
- E) 20 A

Sec# Current and Resistance - Electric Current Grade# 50

# Q18.

Two cylindrical resistors  $R_1$  and  $R_2$  are made from the same material and have the same length. When connected across the same battery,  $R_1$  dissipates twice as much power as  $R_2$ . The ratio of diameter of resistor  $R_1$  to that of  $R_2$  is:

A) 
$$\sqrt{2}$$
  
B) 2

| Phys102                   | Second Major-083           | Zero Version |
|---------------------------|----------------------------|--------------|
| Coordinator: Dr. A. Naqvi | Wednesday, August 19, 2009 | Page: 6      |

C)  $3/\sqrt{2}$ D)  $\frac{1}{2}$ 

E)  $2(\sqrt{2})$ 

Sec# Current and Resistance - Electrical Energy and Power Grade# 50

# Q19.

A carbon resistor has a resistance of 18  $\Omega$  at a temperature of 20°C. What is its resistance at a temperature of 120°C?

(The temperature coefficient of resistivity for carbon is -  $5.0 \times 10^{-4} / C^{\circ}$ .)

A) 17 Ω

B) 22 Ω

C) 11 Ω

D) 32 Ω

E) 10 Ω

Sec# Current and Resistance - Resistance and Temperature Grade# 50

Q20.

Electric charges flow through a wire shaped as shown in Fig. 5. The cross-sectional areas are  $A_1 = 4 \text{ mm}^2$  and  $A_2 = 1 \text{ mm}^2$  respectively. What is the drift speed of the electrons in the narrow section of the wire if their speed is 0.08 m/s in the wider region?

A) 0.32 m/s
B) 0.02 m/s
C) 0.04 m/s
D) 0.16 m/s
E) 0.08 m/s

Sec# Current and Resistance - Ohm's Law Grade# 50

#### Test Expected Average = 50





| Phys102   | Second Major               | Code: 1 |
|-----------|----------------------------|---------|
| Term: 083 | Wednesday, August 19, 2009 | Page: 7 |

| $\mathbf{F} = \frac{\mathbf{k}q_1q_2}{\mathbf{r}^2}  ,  \mathbf{F} = \mathbf{q}_0 \mathbf{E}$                                                             | $I = \frac{dQ}{dt}$ , $I = JA$ , $\vec{J} = (ne)\vec{v}_d$                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| $\Phi = \int_{\text{Surface}} \vec{E} \cdot d\vec{A} ,  E = \frac{kq}{r^2}$                                                                               | $R = \frac{V}{I} = \rho \frac{L}{A}$                                                                                        |
| $E = \frac{kQ}{R^3}r$ , $E = \frac{2k\lambda}{r}$                                                                                                         | $\rho = \rho_0 \left[ 1 + \alpha (T - T_0) \right],  P = IV$                                                                |
| $\varphi_{c} = \oint \vec{E} \cdot d\vec{A} = \frac{q_{in}}{\varepsilon_{0}};  E = \frac{\sigma}{2\varepsilon_{0}};  E = \frac{\sigma}{\varepsilon_{0}};$ | $\mathbf{v} = \mathbf{v}_{o} + \mathbf{at}$                                                                                 |
| $E = \frac{\sigma}{2\epsilon_{a}}$ , $E = \frac{\sigma}{\epsilon_{a}}$                                                                                    | $x - x_{0} = v_{0}t + \frac{1}{2}at$<br>$v^{2} = v_{0}^{2} + 2a(x - x_{0})$                                                 |
| $V = \frac{kQ}{r} ,  W = -\Delta U$                                                                                                                       |                                                                                                                             |
| $\Delta V = V_{\rm B} - V_{\rm A} = -\int_{A}^{B} \vec{E} \cdot d\vec{s} = \frac{\Delta U}{q_{\rm O}}$                                                    | $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N.m}^2$<br>k = 9.0 × 10 <sup>9</sup> N.m <sup>2</sup> /C <sup>2</sup>  |
| $E_x = -\frac{\partial V}{\partial x}, E_y = -\frac{\partial V}{\partial y}, E_z = -\frac{\partial V}{\partial z}$                                        | $q_e = -1.6 \times 10^{-5} \text{ C}$<br>$m_e = 9.11 \times 10^{-31} \text{ kg}$<br>$m_p = 1.67 \times 10^{-27} \text{ kg}$ |
| $U = \frac{kq_1q_2}{r_{12}}$                                                                                                                              | $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$<br>micro ( $\mu$ ) = 10 <sup>-6</sup> , nano (n) = 10 <sup>-9</sup> ,        |
| $C = \frac{Q}{V} ,  C_{o} = \frac{\varepsilon_{o}A}{d} ,  C = 4\pi\varepsilon_{o}\frac{ab}{b-a},$                                                         | pico (p) = $10^{-12}$<br>g = 9.8 m/s <sup>2</sup>                                                                           |
| $\mathbf{U} = \frac{1}{2} \mathbf{C} \mathbf{V}^2 ,  \mathbf{u} = \frac{1}{2} \varepsilon_o E^2 ,  \mathbf{C} = \kappa \mathbf{C}_0 ,$                    |                                                                                                                             |

*Physics 102 Formula sheet for Second Major*