Phys102	Second Major-083	Zero Version
Coordinator: Dr. A. Naqvi	Wednesday, August 19, 2009	Page: 1

Q1.
As shown in Fig. 1, a point charge $\mathrm{q}_{1}=+\mathbf{Q}$ is placed at the center of a square, and a second point charge $q_{2}=-\mathbf{Q}$ is placed at the upper-left corner. It is observed that an electrostatic force of 2.0 N acts on the positive charge at the center. What is the magnitude of the force that acts on the center charge if a third charge $q_{3}=-\mathbf{Q}$ is placed at the lower-left corner as shown?
A) 2.8 N
B) 2.0 N
C) 4.0 N
D) 5.3 N
E) 0.0 N

Sec\# Electric fields - Coulomb's Law
Grade\# 50
Q2.
A point charge $\mathrm{Q}=-500 \mathrm{nC}$ and two unknown point charges, q_{1} and q_{2}, are placed as shown in Fig. 2. The net electric field at the origin O, due to charges Q, q_{1} and q_{2}, is equal to zero. The charges q_{1} and q_{2}, respectively, are:
A) $+131 \mathrm{nC},-106 \mathrm{nC}$
B) $+210 \mathrm{nC},-206 \mathrm{nC}$
C) $-210 \mathrm{nC},+106 \mathrm{nC}$
D) $+270 \mathrm{nC},-301 \mathrm{nC}$
E) $-100 \mathrm{nC},+100 \mathrm{nC}$

Sec\# Electric fields - The Electric Field
Grade\# 50
Q3.
A particle ($\mathrm{m}=20 \mathrm{mg}, \mathrm{q}=-5.0 \mu \mathrm{C}$) moves in a uniform electric field
$\mathbf{E}=(60 \mathrm{~N} / \mathrm{C}) \mathbf{i}$. At $\mathrm{t}=0$, the particle has a velocity $\mathbf{v}=(30 \mathrm{~m} / \mathrm{s}) \mathbf{i}$. Determine the velocity of the particle at $\mathrm{t}=4.0 \mathrm{~s}$.
A) $(-30 \mathrm{~m} / \mathrm{s}) \mathrm{i}$
B) $(-50 \mathrm{~m} / \mathrm{s}) \mathrm{i}$
C) $(5.0 \mathrm{~m} / \mathrm{s}) \mathbf{i}$
D) $(15 \mathrm{~m} / \mathrm{s}) \mathbf{i}$
E) $(-15 \mathrm{~m} / \mathrm{s}) \mathbf{i}$

Sec\# Electric fields - Motion of charge in unform electric field Grade\# 50

Q4.

An electric dipole of dipole moment $\mathbf{p}=\left(5 \times 10^{-10} \mathrm{C} . \mathrm{m}\right) \mathbf{i}$ is placed in an electric field $\quad \mathbf{E}=$ $\left(2 \times 10^{6} \mathrm{~N} / \mathrm{C}\right) \mathbf{i}+\left(2 \times 10^{6} \mathrm{~N} / \mathrm{C}\right) \mathbf{j}$. What is magnitude of the maximum torque experienced by the dipole?

Phys102	Second Major-083	Zero Version
Coordinator: Dr. A. Naqvi	Wednesday, August 19, 2009	Page: 2

A) $1.00 \times 10^{-3} \mathrm{~N} . \mathrm{m}$
B) $1.40 \times 10^{-3} \mathrm{~N} . \mathrm{m}$
C) $2.80 \times 10^{-3} \mathrm{~N} . \mathrm{m}$
D) $2.00 \times 10^{-3} \mathrm{~N} . \mathrm{m}$
E) $3.00 \times 10^{-3} \mathrm{~N} . \mathrm{m}$

Sec\# Electric fields - Motion of charge in unform electric field
Grade\# 50

Q5.

The flux of an electric field $\mathbf{E}=(24 \mathrm{~N} / \mathrm{C}) \mathbf{i}+(30 \mathrm{~N} / \mathrm{C}) \mathbf{j}+(16 \mathrm{~N} / \mathrm{C}) \mathbf{k}$ through a $2.0 \mathrm{~m}^{2}$ portion of the yz plane is:
A) $48 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B) $34 \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}$
C) $42 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D) $32 \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}$
E) $60 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$

Sec\# Gauss's law - Electric Flux and Gauss' Law
Grade\# 50

Q6.

Consider two large oppositely charged parallel metal plates, placed close to each other. The plates are square with sides L and carry charges Q and - Q . The magnitude of the electric field in the region between the plates is:
A) $\mathrm{E}=\frac{\mathrm{Q}}{\varepsilon_{\mathrm{O}} \mathrm{L}^{2}}$
B) $\mathrm{E}=\frac{2 \mathrm{Q}}{\varepsilon_{\mathrm{O}} \mathrm{L}^{2}}$
C) $\mathrm{E}=\frac{4 \mathrm{Q}}{\varepsilon_{\mathrm{O}} \mathrm{L}^{2}}$
D) $\mathrm{E}=\frac{\mathrm{Q}}{2 \varepsilon_{\mathrm{O}} \mathrm{L}^{2}}$
E) $\mathrm{E}=0$

Sec\# Gauss's law - Application to Charged Insulators
Grade\# 50
Q7.
A non-conducting sphere of radius $\mathrm{R}=10 \mathrm{~cm}$ carries a charge density
$\rho=10^{-9} \mathrm{C} / \mathrm{m}^{3}$ distributed uniformly throughout its volume. At what distance within the sphere, measured from the center of the sphere, the magnitude of the electric field is $\mathrm{E}=$ $1.32 \mathrm{~N} / \mathrm{m}$?

Phys102	Second Major-083	Zero Version
Coordinator: Dr. A. Naqvi	Wednesday, August 19, 2009	Page: 3

A) 3.50 cm
B) 7.11 cm
C) 5.53 cm
D) 6.57 cm
E) 8.99 cm

Sec\# Gauss's law - Application to Charged Insulators
Grade\# 50

Q8.

An infinitely long non-conducting cylinder of radius $\mathrm{R}=2.00 \mathrm{~cm}$ carries a uniform charge density $\rho=18.0 \mu \mathrm{C} / \mathrm{m}^{3}$. Calculate the electric field at distance $\mathrm{r}=1.00 \mathrm{~cm}$ from the axis of the cylinder?
A) $1.02 \times 10^{4} \mathrm{~N} / \mathrm{C}$
B) $5.10 \times 10^{3} \mathrm{~N} / \mathrm{C}$
C) $2.01 \times 10^{4} \mathrm{~N} / \mathrm{C}$
D) $2.51 \times 10^{3} \mathrm{~N} / \mathrm{C}$
E) $3.04 \times 10^{3} \mathrm{~N} / \mathrm{C}$

Sec\# Gauss's law - Application to Charged Insulators
Grade\# 50

Q9.

A proton with a speed of $2.00 \times 10^{5} \mathrm{~m} / \mathrm{s}$ enters a region of space in which source charges have created an electric potential. What is the proton's speed after it has moved through a potential difference of +100 V ?
A) $1.44 \times 10^{5} \mathrm{~m} / \mathrm{s}$
B) $1.78 \times 10^{5} \mathrm{~m} / \mathrm{s}$
C) $2.78 \times 10^{5} \mathrm{~m} / \mathrm{s}$
D) $2.21 \times 10^{5} \mathrm{~m} / \mathrm{s}$
E) $1.08 \times 10^{5} \mathrm{~m} / \mathrm{s}$

Sec\# Electric Potential - Electric Potential and Potential Difference Grade\# 50

Q10.
The electric potential at points in $x y$ plane is given by $V=2 x^{2} y+32$. What is the electric field at ($2.0 \mathrm{~m}, 3.0 \mathrm{~m}$)
A) $-24 \mathbf{i}-8.0 \mathbf{j}$
B) $24 \mathbf{i}-8.0 \mathbf{j}$
C) 3.0 i
D) $5 \mathbf{i}+4.0 \mathbf{j}$
E) $8 \mathbf{i}+24 \mathbf{j}$

Sec\# Electric Potential - Electric Potential and Potential Energy
Grade\# 50

Phys102	Second Major-083	Zero Version
Coordinator: Dr. A. Naqvi	Wednesday, August 19, 2009	Page: 4

Q11.
Four equal positive charges, each $3.2 \mu \mathrm{C}$, are held at the four corners of a square of edge 0.50 m . How much work is required to move one of those charges far away from other three?
A) -0.50 J
B) -0.89 J
C) 0.50 J
D) +0.89 J
E) 1.0 J

Sec\# Electric Potential - Potential of a Charged Conductor
Grade\# 50
Q12.
An electric field of $100 \mathrm{~V} / \mathrm{m}$ strength is often observed near the surface of earth. What would be the electric potential at a point on the earth surface? (Radius of Earth $=6.37 \times 10^{6} \mathrm{~m}$)
A) $6.37 \times 10^{8} \mathrm{~V}$
B) $1.23 \times 10^{9} \mathrm{~V}$
C) $8.18 \times 10^{8} \mathrm{~V}$
D) $8.18 \times 10^{9} \mathrm{~V}$
E) 100 V

Sec\# Electric Potential - Electric Potential and Potential Energy Grade\# 50

Q13.
Each of the two $25-\mu \mathrm{F}$ capacitors, as shown in Fig. 3, is initially uncharged. How many Coulombs of charge pass through ammeter A after the switch S is closed for long time?
A) 0.20 C
B) 0.10 C
C) 0.40 C
D) 0.80 C
E) Zero C

Sec\# Capacitance and Dielectrics - Combinations of Capacitors
Grade\# 50
Q14.
Each of the two $25-\mu \mathrm{F}$ capacitors, as shown in Fig. 4 , is initially uncharged. How much energy is stored in the two capacitors after the switch S is closed for long time?
A) 100 J
B) 200 J
C) 50 J
D) 300 J
E) 80 J

Sec\# Capacitance and Dielectrics - Energy Stored in a Charged Capacitor

Phys102	Second Major-083	Zero Version
Coordinator: Dr. A. Naqvi	Wednesday, August 19, 2009	Page: 5

Grade\# 50

Q15.

The plates of a parallel plate capacitor are connected to a battery. If the distance between the plates is halved, the energy stored in the capacitor:
A) Increases two-fold
B) Increases four-fold
C) Remains constant
D) Reduces to one-half
E) Reduces to one-fourth

Sec\# Capacitance and Dielectrics - Calculation of Capacitance
Grade\# 50

Q16.

A parallel-plate capacitor has a capacitance of $10 \mu \mathrm{~F}$ and is charged with a 20 V power supply. The power supply is then removed and a dielectric of dielectric constant 4 is filled in the space between the plates. The voltage across the capacitor with dielectric is:
A) 5 V
B) 20 V
C) 10 V
D) 80 V
E) 50 V

Sec\# Capacitance and Dielectrics - Capacitors with Dielectrics
Grade\# 50

Q17.
A 10 -ohm resistor has a constant current. If 1200 C of charge flow through it in 4 minutes what is the value of the current?
A) 5.0 A
B) 3.0 A
C) 11 A
D) 15 A
E) 20 A

Sec\# Current and Resistance - Electric Current
Grade\# 50
Q18.
Two cylindrical resistors R_{1} and R_{2} are made from the same material and have the same length. When connected across the same battery, R_{1} dissipates twice as much power as R_{2}. The ratio of diameter of resistor R_{1} to that of R_{2} is:
A) $\sqrt{2}$
B) 2

Phys102	Second Major-083	Zero Version
Coordinator: Dr. A. Naqvi	Wednesday, August 19, 2009	Page: 6

C) $3 / \sqrt{2}$
D) $1 / 2$
E) $2(\sqrt{2})$

Sec\# Current and Resistance - Electrical Energy and Power Grade\# 50

Q19.
A carbon resistor has a resistance of 18Ω at a temperature of $20^{\circ} \mathrm{C}$. What is its resistance at a temperature of $120^{\circ} \mathrm{C}$?
(The temperature coefficient of resistivity for carbon is $\mathbf{- 5 . 0} \times \mathbf{1 0}^{\mathbf{- 4}} / \mathbf{C}^{\circ}$.)
A) 17Ω
B) 22Ω
C) 11Ω
D) 32Ω
E) 10Ω

Sec\# Current and Resistance - Resistance and Temperature
Grade\# 50
Q20.
Electric charges flow through a wire shaped as shown in Fig. 5. The cross-sectional areas are $A_{1}=4 \mathrm{~mm}^{2}$ and $A_{2}=1 \mathrm{~mm}^{2}$ respectively. What is the drift speed of the electrons in the narrow section of the wire if their speed is $0.08 \mathrm{~m} / \mathrm{s}$ in the wider region?
A) $0.32 \mathrm{~m} / \mathrm{s}$
B) $0.02 \mathrm{~m} / \mathrm{s}$
C) $0.04 \mathrm{~m} / \mathrm{s}$
D) $0.16 \mathrm{~m} / \mathrm{s}$
E) $0.08 \mathrm{~m} / \mathrm{s}$

Sec\# Current and Resistance - Ohm's Law
Grade\# 50

Test Expected Average $=50$

Phys102	Second Major	Code: 1
Term: 083	Wednesday, August 19, 2009	Page: 6

Figure 1

Figure 3

Figure 2

Figure 4

Figure5

Physics 102

Formula sheet for Second Major

$$
\begin{aligned}
& \mathrm{F}=\frac{\mathrm{kq}_{1} \mathrm{q}_{2}}{\mathrm{r}^{2}}, \quad \mathrm{~F}=\mathrm{q}_{0} \mathrm{E} \\
& \Phi=\int_{\text {Sufface }} \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~A}}, \quad \mathrm{E}=\frac{\mathrm{kq}}{\mathrm{r}^{2}} \\
& \mathrm{E}=\frac{\mathrm{kQ}}{\mathrm{R}^{3}} \mathrm{r} \quad, \quad \mathrm{E}=\frac{2 \mathrm{k} \lambda}{\mathrm{r}} \\
& \varphi_{\mathrm{c}}=\oint \overrightarrow{\mathrm{E}} . \mathrm{d} \overrightarrow{\mathrm{~A}}=\frac{\mathrm{q}_{\text {in }}}{\varepsilon_{0}} ; \quad E=\frac{\sigma}{2 \varepsilon_{o}} ; \quad E=\frac{\sigma}{\varepsilon_{o}} \\
& \mathrm{E}=\frac{\sigma}{2 \varepsilon_{\mathrm{o}}} \quad, \quad \mathrm{E}=\frac{\sigma}{\varepsilon_{\mathrm{o}}} \\
& \mathrm{~V}=\frac{\mathrm{kQ}}{\mathrm{r}}, \mathrm{~W}=-\Delta \mathrm{U} \\
& \Delta \mathrm{~V}=\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}=-\int_{\mathrm{A}}^{\mathrm{B}} \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~s}}=\frac{\Delta \mathrm{U}}{\mathrm{q}_{0}} \\
& \mathrm{E}_{\mathrm{x}}=-\frac{\partial \mathrm{V}}{\partial \mathrm{x}}, \mathrm{E}_{\mathrm{y}}=-\frac{\partial \mathrm{V}}{\partial \mathrm{y}}, \mathrm{E}_{\mathrm{z}}=-\frac{\partial \mathrm{V}}{\partial \mathrm{z}} \\
& \mathrm{U}=\frac{\mathrm{kq}_{1} \mathrm{q}_{2}}{\mathrm{r}_{12}} \\
& \mathrm{C}=\frac{\mathrm{Q}}{\mathrm{~V}}, \quad \mathrm{C}_{0}=\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}, \quad C=4 \pi \varepsilon_{o} \frac{a b}{b-a}, \\
& \mathrm{U}=\frac{1}{2} \mathrm{CV}^{2}, \mathrm{u}=\frac{1}{2} \varepsilon_{o} E^{2}, \quad \mathrm{C}=\kappa \mathrm{C}_{0}, \\
& \mathrm{I}=\frac{\mathrm{dQ}}{\mathrm{dt}}, \mathrm{I}=\mathrm{JA}, \quad \vec{J}=(n e) \vec{v}_{d} \\
& \mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}}=\rho \frac{\mathrm{L}}{\mathrm{~A}} \\
& \rho=\rho_{0}\left[1+\alpha\left(T-T_{0}\right)\right], \quad P=I V \\
& \mathrm{v}=\mathrm{v}_{\mathrm{o}}+\mathrm{at} \\
& x-x_{0}=v_{0} t+\frac{1}{2} a^{2} \\
& \mathrm{v}^{2}=\mathrm{v}_{\mathrm{o}}^{2}+2 \mathrm{a}\left(\mathrm{x}-\mathrm{x}_{\mathrm{o}}\right) \\
& \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2} \\
& \mathrm{k}=9.0 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2} \\
& \mathrm{q}_{\mathrm{e}}=-1.6 \times 10^{-19} \mathrm{C} \\
& \mathrm{~m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \\
& \mathrm{~m}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg} \\
& 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J} \\
& \operatorname{micro}(\mu)=10^{-6} \text {, nano }(\mathrm{n})=10^{-9} \text {, } \\
& \text { pico }(\mathrm{p})=10^{-12} \\
& \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

