Q1.
Particle 1 with charge q_{1}, and particle 2 with charge q_{2} are on the x axis, with particle 1 at $x=$ 4.0 cm and particle 2 at $x=-2.0 \mathrm{~cm}$. Find the relationship between q_{1} and q_{2} so that the net force on a third particle of charge q located at the origin, be zero,
A) $q_{2}=q_{1} / 4$
B) $q_{2}=4 q_{1}$
C) $\mathrm{q}_{2}=-2 \mathrm{q}_{1}$
D) $q_{2}=-4 q_{1}$
E) $\mathrm{q}_{2}=-\mathrm{q}_{1} / 4$

Q2.

A particle with charge $2.0 \mu \mathrm{C}$ is placed at the origin, an identical particle, with the same charge, is placed 2.0 cm from the origin on the positive x axis, and a third identical particle, with the same charge, is placed 2.0 cm from the origin on the positive y axis. The magnitude of the force on the particle at the origin is:
A) $1.3 \times 10^{2} \mathrm{~N}$
B) zero N
C) $6.4 \times 10^{3} \mathrm{~N}$
D) $1.8 \times 10^{2} \mathrm{~N}$
E) $3.6 \times 10^{2} \mathrm{~N}$

Q3.

Two identical charges each of charge Q are positioned at points $\mathrm{A}(5.0 \mathrm{~m}, 0.0 \mathrm{~m})$ and $\mathrm{B}(-$ $5.0 \mathrm{~m}, 0.0 \mathrm{~m})$ to produce a net electric field of $\vec{E}=(-10 \hat{j}) \mathrm{N} / \mathrm{C}$ at point $\mathrm{C}(0.0 \mathrm{~m}, 5.0 \mathrm{~m})$. Find the value of Q .
A) -39 nC
B) +39 nC
C) +70 nC
D) -70 nC
E) -80 nC

Q4.

The dipole moment of a dipole in a $300-\mathrm{N} / \mathrm{C}$ electric field is initially perpendicular to the field, but it rotates so that it becomes in the same direction as the field. If the electric dipole moment has a magnitude of $2.0 \times 10^{-9} \mathrm{C} . \mathrm{m}$, the work done by the field is:
A) $+6.0 \times 10^{-7} \mathrm{~J}$
B) $-6.0 \times 10^{-7} \mathrm{~J}$
C) 0
D) $-12 \times 10^{-7} \mathrm{~J}$
E) $+12 \times 10^{-7} \mathrm{~J}$

Phys102	Second Major-081	Zero Version
Coordinator: Dr. A. K. Mekki	Saturday, January 10, 2009	Page: 2

Q5.
A spherical conducting shell has charge Q . A particle with charge q is placed at the center of the spherical shell. The charge on the inner surface of the shell and the charge on the outer surface of the shell, respectively, are:
A) $-q,(Q+q)$
B) $0, \mathrm{Q}$
C) $\mathrm{q},(\mathrm{Q}-\mathrm{q})$
D) $\mathrm{Q}, 0$
E) $-\mathrm{q}, 0$

Q6.

Fig. 1 shows a Gaussian surface in the shape of a cube with edge 2.0 m . This cube lies in a region where the electric field vector is given by $\vec{E}=(-4.0 \hat{i}+8.0 \hat{j}) \mathrm{N} / \mathrm{C}$. Find the net charge contained in the cube.

Fig\#

A) 0 C
B) 4.2 C
C) 12 C
D) 5.0 C
E) 9.8 C

Q7.

If the constant electric field in Fig 2 has a magnitude $\mathrm{E}=25 \mathrm{~N} / \mathrm{C}$, calculate the electric flux through the curved surface of the hemisphere (half a sphere of radius $\mathrm{R}=5.0 \mathrm{~cm}$). (Knowing that the electric field is perpendicular to the flat surface and that the hemisphere encloses no electric charges.)

Fig\#

Phys102	Second Major-081	Zero Version
Coordinator: Dr. A. K. Mekki	Saturday, January 10, 2009	Page: 3

A) $0.20 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B) $9.0 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C) $6.4 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D) $1.3 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E) $3.6 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$

Q8.
A charge is distributed uniformly along a long straight wire. If the electric field 4.0 cm from the wire is $40 \mathrm{~N} / \mathrm{C}$, then the electric field 8.0 cm from the wire is:
A) $20 \mathrm{~N} / \mathrm{C}$
B) $40 \mathrm{~N} / \mathrm{C}$
C) $80 \mathrm{~N} / \mathrm{C}$
D) $120 \mathrm{~N} / \mathrm{C}$
E) $10 \mathrm{~N} / \mathrm{C}$

Q9.
Fig. 3 shows a $3.0 \times 10^{5} \mathrm{~N} / \mathrm{C}$ uniform electric field pointing perpendicularly to the left face of a large neutral vertical conducting plate. The surface charge density of the left (σ_{L}) and right $\left(\sigma_{R}\right)$ faces of the plate, respectively, are:

Fig\#
\#:

A) $-2.7 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2} ;+2.7 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}$
B) $+2.7 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2} ;-2.7 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}$
C) $-5.3 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2} ;+5.3 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}$
D) $+5.3 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2} ;-5.3 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}$
E) $0 \mathrm{C} / \mathrm{m}^{2} ; 0 \mathrm{C} / \mathrm{m}^{2}$

Q10.
Points A $(2.0 \mathrm{~m}, 3.0 \mathrm{~m})$ and $\mathrm{B}(5.0 \mathrm{~m}, 7.0 \mathrm{~m})$ are located in a region where the electric field is uniform and is given by $\vec{E}=(4.0 \hat{i}+3.0 \hat{j}) \mathrm{N} / \mathrm{C}$. What is potential difference $\left(\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right)$?
A) 24 V
B) 27 V
C) 30 V
D) 33 V
E) 11 V

Q11.

Eight isolated identical spherical raindrops are each at a potential of 100 V at the surface, relative to the potential at infinity. They are combined together to make one spherical raindrop whose potential at the surface is:
A) 400 V
B) 200 V
C) 600 V
D) 800 V
E) 100 V

Q12.

Point charges q and Q are placed as shown in Fig. 4. If $\mathrm{q}=+2.0 \mathrm{nC}$ and $\mathrm{Q}=-2.0 \mathrm{nC}, a=3.0$ m , and $b=4.0 \mathrm{~m}$, what is the electric potential difference $\left(\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right)$?

Fig\#

A) 4.8 V
B) 6.0 V
C) -7.2 V
D) 8.4 V
E) 0 V

Q13.

Two identical and isolated $8.0 \mu \mathrm{C}$ point charges are positioned on the x -axis, one is at $\mathrm{x}=$ +1.0 m and the other is at $\mathrm{x}=-1.0 \mathrm{~m}$. They are released from rest simultaneously. What is the kinetic energy of either of the charges after it has moved 2.0 m along the x axis?
A) 96 mJ
B) 54 mJ
C) 84 mJ
D) 63 mJ
E) 48 mJ

Q14.
A conducting sphere 1 with radius R has a positive charge Q. Another conducting sphere 2 with radius 2 R is far from sphere 1 and initially uncharged. After the separated spheres are connected with a thin conducting wire the two spheres end up with charges q_{1} and q_{2}. Which of the following statements is correct?
A) both spheres are at same potential.
B) the amount of charge on each sphere is $\mathrm{Q} / 2$.
C) the electric field at the surfaces of the two spheres is equal.
D) the potential of the spheres are in the ratio $\mathrm{V}_{2} / \mathrm{V}_{1}=\mathrm{q}_{2} / \mathrm{q}_{1}$
E) the potential of the spheres are in the ratio $V_{2} / V_{1}=2$

Phys102	Second Major-081	Zero Version
Coordinator: Dr. A. K. Mekki	Saturday, January 10, 2009	Page: 6

Q15.

You are to connect capacitors $\mathrm{C}_{1}=\mathrm{C}$ and $\mathrm{C}_{2}=2 \mathrm{C}$ to the same battery, first individually, then in series and then in parallel. In which of the following cases, the charge stored is the smallest?
A) C 1 and C 2 in series
B) C 1 and C 2 in parallel
C) C 1 individually
D) C2 individually
E) In all cases the same amount of charge is stored

Q16.
Given a 9.4 pF air-filled capacitor, you are asked to convert it to a capacitor that can store 9.4 $\mu \mathrm{J}$, with a potential of 877 V . What is the dielectric constant of the material that you must insert between the plates of the capacitor?
A) 2.6
B) 0.39
C) 4.7
D) 0.21
E) 310

Q17.
A capacitor $\mathrm{C} 1=1.00 \mu \mathrm{~F}$ and another capacitor $\mathrm{C} 2=2.00 \mu \mathrm{~F}$ are connected in series across a 900 V supply line. The charged capacitors are disconnected from the supply line then reconnected to each other with terminals of like sign together. Find the final charges on C1 and C 2 , respectively.
A) $400 \mu \mathrm{C}, 800 \mu \mathrm{C}$
B) $200 \mu \mathrm{C}, 400 \mu \mathrm{C}$
C) $100 \mu \mathrm{C}, 200 \mu \mathrm{C}$
D) $800 \mu \mathrm{C}, 400 \mu \mathrm{C}$
E) $400 \mu \mathrm{C}, 200 \mu \mathrm{C}$

Q18.
Two capacitors each of capacitance $250 \mu \mathrm{~F}$ are connected in parallel across a battery of 120 V . How much energy is produced after both capacitors are completely discharged?
A) 3.6 J
B) 5.8 J
C) 8.6 J
D) 12 J
E) 36 J

[^0]| Phys102 | Second Major-081 | Zero Version |
| :--- | :---: | ---: |
| Coordinator: Dr. A. K. Mekki | Saturday, January 10, 2009 | Page: 7 |

Q19.
A current of 0.300 A is passed through a lamp (light bulb) for 2.00 minutes using a 6.00 V power supply. The energy dissipated by this lamp during the 2.00 minutes is:
A) 216 J
B) 12.0 J
C) 20.5 J
D) 36.0 J
E) 1.85 J

Q20.
A certain wire has resistance R. Another wire, of the same material, has half the length and half the diameter of the first wire. The resistance of the second wire is:
A) $2 R$
B) $R / 2$
C) R
D) $\mathrm{R} / 4$
E) 4 R

Figure 2

Figure 3

Physics 102

Formula sheet for Second Major

$$
\begin{aligned}
& \mathrm{F}=\frac{\mathrm{kq}_{1} \mathrm{q}_{2}}{\mathrm{r}^{2}}, \quad \mathrm{~F}=\mathrm{q}_{0} \mathrm{E} \\
& \Phi=\int_{\text {Sufface }} \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~A}}, \quad \mathrm{E}=\frac{\mathrm{kq}}{\mathrm{r}^{2}} \\
& \mathrm{E}=\frac{\mathrm{kQ}}{\mathrm{R}^{3}} \mathrm{r} \quad, \quad \mathrm{E}=\frac{2 \mathrm{k} \lambda}{\mathrm{r}} \\
& \varphi_{\mathrm{c}}=\oint \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~A}}=\frac{\mathrm{q}_{\text {in }}}{\varepsilon_{0}} ; \quad E=\frac{\sigma}{2 \varepsilon_{o}} ; \quad E=\frac{\sigma}{\varepsilon_{o}} \\
& \mathrm{E}=\frac{\sigma}{2 \varepsilon_{\mathrm{o}}} \quad, \quad \mathrm{E}=\frac{\sigma}{\varepsilon_{\mathrm{o}}} \\
& \mathrm{~V}=\frac{\mathrm{kQ}}{\mathrm{r}}, \mathrm{~W}=-\Delta \mathrm{U} \\
& \Delta \mathrm{~V}=\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}=-\int_{\mathrm{A}}^{\mathrm{B}} \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~s}}=\frac{\Delta \mathrm{U}}{\mathrm{q}_{0}} \\
& \mathrm{E}_{\mathrm{x}}=-\frac{\partial \mathrm{V}}{\partial \mathrm{x}}, \mathrm{E}_{\mathrm{y}}=-\frac{\partial \mathrm{V}}{\partial \mathrm{y}}, \mathrm{E}_{\mathrm{z}}=-\frac{\partial \mathrm{V}}{\partial \mathrm{z}} \\
& U=\frac{\mathrm{kq}_{1} \mathrm{q}_{2}}{\mathrm{r}_{12}} \\
& \mathrm{C}=\frac{\mathrm{Q}}{\mathrm{~V}}, \quad \mathrm{C}_{0}=\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}, \quad C=4 \pi \varepsilon_{o} \frac{a b}{b-a}, \\
& \mathrm{U}=\frac{1}{2} \mathrm{CV}^{2}, \mathrm{u}=\frac{1}{2} \varepsilon_{0} E^{2}, \quad \mathrm{C}=\kappa \mathrm{C}_{0}, \\
& \mathrm{I}=\frac{\mathrm{dQ}}{\mathrm{dt}}, \mathrm{I}=\mathrm{JA}, \\
& R=\frac{V}{I}=\rho \frac{L}{A} \\
& \rho=\rho_{0}\left[1+\alpha\left(T-T_{0}\right)\right], \quad P=I V \\
& \mathrm{v}=\mathrm{v}_{\mathrm{o}}+\mathrm{at} \\
& x-x_{o}=v_{o} t+\frac{1}{2} a t^{2} \\
& \mathrm{v}^{2}=\mathrm{v}_{\mathrm{o}}^{2}+2 \mathrm{a}\left(\mathrm{x}-\mathrm{x}_{\mathrm{o}}\right) \\
& \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2} \\
& \mathrm{k}=9.0 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2} \\
& \mathrm{q}_{\mathrm{e}}=-1.6 \times 10^{-19} \mathrm{C} \\
& \mathrm{~m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \\
& \mathrm{~m}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg} \\
& 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J} \\
& \operatorname{micro}(\mu)=10^{-6} \text {, nano }(\mathrm{n})=10^{-9} \text {, } \\
& \text { pico }(\mathrm{p})=10^{-12} \\
& \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

[^0]: King Fahd University of Petroleum and Minerals
 Physics Department
 c-20-n-20-s-0-e-1-fg-1-fo-0

