Phys102	Second Major-073	Zero Version
Coordinator: Al-Jalal, A	Monday, August 11, 2008	Page: 1

Q1.
Three point charges $\mathrm{Q}_{1}, \mathrm{Q}_{2}=20 \mu \mathrm{C}$ and $\mathrm{Q}_{3}=50 \mu \mathrm{C}$ are located as shown in the figure. If the net force on Q_{3} is in the direction of the negative y-axis, find the charge of Q_{1}.

Fig\#

A) $-10 \mu \mathrm{C}$
B) $+10 \mu \mathrm{C}$
C) 0
D) $-7.7 \mu \mathrm{C}$
E) $+7.7 \mu \mathrm{C}$

Q2.
The distance between two identical conductor spheres is 0.50 m . Initially, one sphere has a charge of $-8.0 \mu \mathrm{C}$ and the other sphere has a charge of $+2.0 \mu \mathrm{C}$. If the spheres are connected with a very thin conducting wire, what will be the electrostatic force on each sphere?
A) 0.32 N , repulsive.
B) 0.32 N , attractive.
C) 0 .
D) 0.58 N , repulsive.
E) 0.58 N , attractive.

Q3.
For the arrangement of charges shown in the figure, what is the electric field at the point P ? q $=1.0 \mu \mathrm{C}$ and $\mathrm{d}=50 \mathrm{~cm}$.

Fig\#

Phys102	Second Major-073	Zero Version
Coordinator: Al-Jalal, A	Monday, August 11,2008	Page: 2

A) $-47 \mathrm{kV} / \mathrm{m} \hat{\jmath}$.
B) $+4.7 \mathrm{kV} / \mathrm{m} \mathrm{\jmath}$.
C) Zero.
D) $-72 \mathrm{kV} / \mathrm{m} \hat{\mathrm{j}}$.
E) $+72 \mathrm{kV} / \mathrm{m} \mathrm{\jmath}$.

Q4.

An electron is released from rest in a region of uniform electric field. The electron travels 4.0 cm in $20 \times 10^{-9} \mathrm{~s}$. What is the magnitude of the electric field?
A) $1.1 \mathrm{kV} / \mathrm{m}$.
B) $2.1 \mathrm{kV} / \mathrm{m}$.
C) $8.0 \mathrm{kV} / \mathrm{m}$.
D) $2.0 \mathrm{kV} / \mathrm{m}$.
E) $0.80 \mathrm{kV} / \mathrm{m}$.

Q5.
A point charged particle is placed at the center of a spherical Gaussian surface. The electric flux through the Gaussian surface can be changed if
A) the point charge is moved to just outside the sphere.
B) the sphere is replaced by a cube of half the volume.
C) the point charge is moved off the center but still inside the original sphere.
D) the sphere is replaced by a cube of the same volume.
E) a second point charge is placed just outside the sphere.

Q6.
A spherical conducting shell has a net charge of $10 \mu \mathrm{C}$. If a point charge of $+3 \mu \mathrm{C}$ is placed at the center of the shell, the net charge on the outer surface of the shell will be
A) $+13 \mu \mathrm{C}$.
B) $-3 \mu \mathrm{C}$.

Phys102	Second Major-073	Zero Version
Coordinator: Al-Jalal, A	Monday, August 11, 2008	Page: 3

C) $0 \mu \mathrm{C}$.
D) $-7 \mu \mathrm{C}$.
E) $+10 \mu \mathrm{C}$.

Q7.
A hemisphere (half sphere) of radius 3.5 cm contains a total charge of $6.6 \times 10^{-7} \mathrm{C}$. The flux through the rounded portion of the surface is $9.8 \times 10^{4} \mathrm{Nm}^{2} / \mathrm{C}$. The flux through the flat base is
A) $-2.3 \times 10^{4} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{C}$.
B) $+2.3 \times 10^{4} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{C}$.
C) 0
D) $-9.8 \times 10^{4} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{C}$.
E) $+9.8 \times 10^{4} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{C}$.

Q8.

Charge is uniformly distributed on a long straight wire. At a distance of 5.0 cm from the wire, the electric field is $600 \mathrm{~N} / \mathrm{C}$. What is the charge on a length of 80 cm of the wire?
A) 1.3 nC .
B) 1.7 nC .
C) 0.27 nC .
D) 2.4 nC .
E) 0.67 nC .

Q9.
An electron moves from point i to point f , in the direction of a uniform electric field.
During this displacement
Fig\#

A) the work done by the field is negative and the electric potential energy of the electronfield system increases.
B) the work done by the field is positive and the electric potential energy of the electronfield system increases.
C) the work done by the field is positive and the electric potential energy of the electronfield system decreases.
D) the work done by the field is negative and the electric potential energy of the electronfield system decreases.
E) the work done by the field is positive and the electric potential energy of the electronfield system does not change.

Phys102	Second Major-073	Zero Version
Coordinator: Al-Jalal, A	Monday, August 11, 2008	Page: 4

Q10.
A particle with a charge of $5.5 \times 10^{-8} \mathrm{C}$ is fixed at the origin. A particle with a charge of $-2.3 \times 10^{-8} \mathrm{C}$ is moved from $\mathrm{x}=3.5 \mathrm{~cm}$ on the x -axis to $\mathrm{y}=4.3 \mathrm{~cm}$ on the y -axis. The change in potential energy of the two-particle system is
A) $+6.0 \times 10^{-5} \mathrm{~J}$.
B) $-3.1 \times 10^{-3} \mathrm{~J}$.
C) $+3.1 \times 10^{-3} \mathrm{~J}$.
D) $-6.0 \times 10^{-5} \mathrm{~J}$.
E) 0 .

Q11.
The figure shows a particle of mass m and charge -q moving between two equipotential surfaces V_{1} and V_{2} which are separated by a distance d. If the speed of the particle at surface V_{1} is v_{0}, what is the change in the kinetic energy of the particle when it moves from surface V_{1} to surface V_{2} ?

Fig\#

A) $q V$.
B) $-q V$.
C) $(1 / 2) \mathrm{mv}_{0}^{2}$.
D) $-(1 / 2) m v_{0}{ }^{2}$.
E) $\mathrm{qV}-(1 / 2) \mathrm{mv}_{\mathrm{o}}{ }^{2}$.

Q12.
An electric potential is described by the function: $V(x)=3 x^{2}-15 x+7$ volt, where x is in meters. At what point on the x -axis is the electric field strength is zero?

Phys102	Second Major-073	Zero Version
Coordinator: Al-Jalal, A	Monday, August 11, 2008	Page: 5

A) 2.5 m .
B) 7.5 m .
C) 3.5 m .
D) 4.5 m .
E) 1.5 m .

Q13.

Suppose you have two capacitors $\mathrm{C}_{1}=1.0 \mu \mathrm{~F}$ and $\mathrm{C}_{2}=2.0 \mu \mathrm{~F} . \mathrm{C}_{2}$ is uncharged and C_{1} is charged to a voltage of 5.0 V by a battery. The battery is disconnected from C_{1} and then C_{1} is connected directly to C_{2}. What will be the potential across each capacitor?
A) 1.7 V .
B) 0 V .
C) 5.0 V
D) 2.5 V .
E) 3.0 V .

Q14.

A $15 \mu \mathrm{~F}$ capacitor is connected to a 50 V battery and becomes fully charged. The battery is removed and a slab of dielectric that completely fills the space between the plates is inserted. If the dielectric has a dielectric constant of 5.0 , what is the voltage across the capacitor's plates after the slab is inserted?
A) 10 V .
B) 250 V .
C) 2.0 V .
D) 75 V .
E) 3.0 V .

Q15.
A parallel plate capacitor is connected to a battery and becomes fully charged. The capacitor is then disconnected, and the separation between the plates is increased in such a way that no charge leaks off. What happens to the energy stored in this capacitor?
A) increases.
B) decreases
C) becomes zero.
D) does not change.
E) not enough data to choose the right answer.

Q16.
Find the equivalent capacitance between the points A and B .
Fig\#

Phys102	Second Major-073	Zero Version
Coordinator: Al-Jalal, A	Monday, August 11,2008	Page: 6

$$
3.0 \mu \mathrm{~F}
$$

A) $4.8 \mu \mathrm{~F}$.
B) $4.0 \mu \mathrm{~F}$.
C) $5.1 \mu \mathrm{~F}$.
D) $3.0 \mu \mathrm{~F}$.
E) $6.0 \mu \mathrm{~F}$.

Q17.
A coffee maker, which draws 12.0 A of current, has been left on for 8.0 min . What is the net number of electrons that have passed through the coffee maker?
A) 3.6×10^{22},
B) 6.0×10^{22}.
C) 1.0×10^{22}.
D) 5.7×10^{22}.
E) 2.0×10^{22}.

Q18.

The figure represents a section of a circular conductor of non-uniform diameter carrying a current of 10.0 A . The cross-sectional area A_{1} has a radius of 0.400 cm . If the cross-sectional area A_{2} has a radius twice of that of cross-sectional area A_{1}, then what is the current density at A_{2} ?

Fig\#

Phys102	Second Major-073	Zero Version
Coordinator: Al-Jalal, A	Monday, August 11,2008	Page: 7

A) $4.97 \mathrm{~A} / \mathrm{cm}^{2}$.
B) $5.80 \mathrm{~A} / \mathrm{cm}^{2}$.
C) $2.31 \mathrm{~A} / \mathrm{cm}^{2}$.
D) $7.01 \mathrm{~A} / \mathrm{cm}^{2}$.
E) $1.97 \mathrm{~A} / \mathrm{cm}^{2}$.

Q19.
What would be the uniform cross-sectional area of a wire made out of 1.50 g of a metal having a resistance of 0.600Ω, and all of the metal was used to make the wire? Take the density of the metal to be $8.92 \mathrm{~g} / \mathrm{cm}^{3}$ and resistivity $1.69 \times 10^{-8} \Omega$-m.
A) $6.88 \times 10^{-8} \mathrm{~m}^{2}$.
B) $4.73 \times 10^{-8} \mathrm{~m}^{2}$.
C) $2.22 \times 10^{-8} \mathrm{~m}^{2}$.
D) $5.92 \times 10^{-8} \mathrm{~m}^{2}$.
E) $9.93 \times 10^{-8} \mathrm{~m}^{2}$.

Q20.

A light bulb is rated at 0.40 A and 3.0 V . At $20^{\circ} \mathrm{C}$, the bulb filament has a resistance of 2.0Ω. If the filament is made of tungsten, what is the temperature of the filament when bulb is on? The temperature coefficient of resistivity for tungsten is $4.5 \times 10^{-3} \mathrm{~K}^{-1}$.
A) $630^{\circ} \mathrm{C}$.
B) $900^{\circ} \mathrm{C}$.
C) $340^{\circ} \mathrm{C}$.
D) $500^{\circ} \mathrm{C}$.
E) $450{ }^{\circ} \mathrm{C}$.

Physics 102
Formula sheet for Second Major

$$
\begin{aligned}
& \mathrm{F}=\frac{\mathrm{kq}_{1} \mathrm{q}_{2}}{\mathrm{r}^{2}}, \quad \mathrm{~F}=\mathrm{q}_{0} \mathrm{E} \\
& \varphi=\int_{\text {Surface }} \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~A}}, \quad \mathrm{E}=\frac{\mathrm{kq}}{\mathrm{r}^{2}} \\
& \mathrm{E}=\frac{\mathrm{kQ}}{\mathrm{R}^{3}} \mathrm{r} \quad, \quad \mathrm{E}=\frac{2 \mathrm{k} \lambda}{\mathrm{r}} \\
& \varphi_{c}=\oint \vec{E} \cdot d \vec{A}=\frac{q_{\text {in }}}{\varepsilon_{0}} \\
& \mathrm{E}=\frac{\sigma}{2 \varepsilon_{\mathrm{o}}} \quad, \quad \mathrm{E}=\frac{\sigma}{\varepsilon_{\mathrm{o}}} \\
& \mathrm{~V}=\frac{\mathrm{kQ}}{\mathrm{r}}, \mathrm{~W}=-\Delta \mathrm{U} \\
& \Delta \mathrm{~V}=\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}=-\int_{\mathrm{A}}^{\mathrm{B}} \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~S}}=\frac{\Delta \mathrm{U}}{\mathrm{q}_{0}} \\
& \mathrm{E}_{\mathrm{x}}=-\frac{\partial \mathrm{V}}{\partial \mathrm{x}}, \quad \mathrm{E}_{\mathrm{y}}=-\frac{\partial \mathrm{V}}{\partial \mathrm{y}}, \quad \mathrm{E}_{\mathrm{z}}=-\frac{\partial \mathrm{V}}{\partial \mathrm{z}} \\
& \mathrm{U}=\frac{\mathrm{kq}_{1} \mathrm{q}_{2}}{\mathrm{r}_{12}} \text {, } \\
& \mathrm{C}=\frac{\mathrm{Q}}{\mathrm{~V}}, \quad \mathrm{C}_{0}=\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}, \quad C=4 \pi \varepsilon_{0} \frac{a b}{b-a}, \\
& \mathrm{U}=\frac{1}{2} \mathrm{CV}^{2}, \quad \mathrm{u}=\frac{1}{2} \varepsilon_{o} E^{2}, \quad \mathrm{C}=\kappa \mathrm{C}_{0}, \\
& \mathrm{I}=\frac{\mathrm{dQ}}{\mathrm{dt}}, \mathrm{I}=\mathrm{JA} \text {, } \\
& R=\frac{V}{I}=\rho \frac{L}{A} \\
& \rho=\rho_{0}\left[1+\alpha\left(T-T_{0}\right)\right], \quad \mathrm{P}=\mathrm{IV} \\
& \mathrm{v}=\mathrm{v}_{\mathrm{o}}+\mathrm{at} \\
& x-x_{0}=v_{0} t+\frac{1}{2} a t^{2} \\
& \mathrm{v}^{2}=\mathrm{v}_{\mathrm{o}}^{2}+2 \mathrm{a}\left(\mathrm{x}-\mathrm{x}_{\mathrm{o}}\right) \\
& \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2} \\
& \mathrm{k}=8.99 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2} \\
& \mathrm{q}_{\mathrm{e}}=-1.6 \times 10^{-19} \mathrm{C} \\
& \mathrm{~m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \\
& \mathrm{~m}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg} \\
& 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J} \\
& \operatorname{micro}(\mu)=10^{-6} \text {, nano }(\mathrm{n})=10^{-9} \text {, } \\
& \text { pico }(\mathrm{p})=10^{-12} \\
& \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

