Q1. In FIGURE 1, the three charges are: $\mathrm{q}_{1}=+5.00 \mu \mathrm{C}, \mathrm{q}_{2}=+4.00 \mu \mathrm{C}$, and $\mathrm{q}_{3}=-6.00 \mu \mathrm{C}$. What is the net electrostatic force on q_{1} due to q_{2} and q_{3} ?

Fig\#

A) $-200 \hat{\mathbf{i}}+675 \hat{\mathbf{j}}(\mathrm{~N})$
B) $-540 \hat{\mathbf{i}}+1350 \hat{\mathbf{j}}$ (N)
C) $-120 \hat{\mathbf{i}}+380 \hat{\mathbf{j}}$ (N)
D) $-222 \hat{\mathbf{i}}+750 \hat{\mathbf{j}}(\mathrm{~N})$
E) $-133 \hat{\mathbf{i}}+300 \hat{\mathbf{j}}$ (N)

Q2. Consider three distant spheres with charges $\mathrm{Q}_{1 \mathrm{i}}=1 \mathrm{C}, \mathrm{Q}_{2 \mathrm{i}}=2 \mathrm{C}$, and $\mathrm{Q}_{3 \mathrm{i}}=3 \mathrm{C}$. We allow these three charges to touch each other for a short time and then we separate them. The new charges of these spheres become $\mathrm{Q}_{1 \mathrm{f}}=\mathrm{q}, \mathrm{Q}_{2 \mathrm{f}}=0.5 \mathrm{q}$, and $\mathrm{Q}_{3 \mathrm{f}}=1.5 \mathrm{q}$. Find the value of q .
A) 2 C
B) 1 C
C) 3 C
D) 6 C
E) 4 C

Q3. Particle 1 of charge $\mathrm{Q}_{1}=4 \mathrm{Q}$ and particle 2 of charge $\mathrm{Q}_{2}=9 \mathrm{Q}$ are fixed as shown in FIGURE 2. At what distance from Q_{1} along the y -axis will the net electric field due to the two particles be zero?

Fig\#

A) $2 \mathrm{~L} / 5$
B) $4 \mathrm{~L} / 9$
C) $2 \mathrm{~L} / 3$
D) $3 \mathrm{~L} / 2$
E) $3 \mathrm{~L} / 5$

Q4. An electron is shot (ejected) at an initial speed of $3.0 \times 10^{4} \mathrm{~m} / \mathrm{s}$ at an angle of 45° relative to the positive x-axis, as shown in FIGURE 3. At time $t=0$, the electron enters a region of uniform electric field $\overrightarrow{\mathbf{E}}=2.0 \times 10^{-6} \hat{\mathbf{j}}$ (N/C). Find the velocity of the electron along y-axis at $t=1.0 \mathrm{~s}$. Ignore gravity.

Fig\#

A) $-3.2 \times 10^{5} \hat{\mathbf{j}} \quad \mathrm{~m} / \mathrm{s}$
B) $+3.2 \times 10^{5} \hat{\mathbf{j}} \mathrm{~m} / \mathrm{s}$
C) $-2.5 \times 10^{3} \hat{\mathbf{j}} \quad \mathrm{~m} / \mathrm{s}$
D) $+2.5 \times 10^{3} \hat{\mathbf{j}} \quad \mathrm{~m} / \mathrm{s}$
E) $+3.2 \times 10^{3} \hat{\mathbf{j}} \quad \mathrm{~m} / \mathrm{s}$

Q5. Consider three different electric dipoles placed in the same uniform electric field \mathbf{E}, as shown in FIGURE 4, where $\theta=60^{\circ}$. Which of these dipoles has (or have) the LOWEST electric potential energy?

Fig\#

A) 2
B) 1
C) 3
D) 1 and 3
E) 2 and 3

Q6. A cube of 2.0 m edge is placed in a uniform field given by $\overrightarrow{\mathbf{E}}=2.0 \hat{\mathbf{i}}+1.0 \hat{\mathbf{j}}$ (N/C). The flux of the electric field through the face (\mathbf{F}) perpendicular to the y - axis (see FIGURE 5) is

Fig\#

A) $4.0 \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}$
B) $8.0 \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}$
C) $12 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D) $48 \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}$
E) zero

Q7. In FIGURE 6, a charge \mathbf{q} is placed at the common center of two hemispheres \mathbf{A} and \mathbf{B}. The flux of the electric field through hemisphere \mathbf{B} is

Fig\#

A) equal to the flux through hemisphere \mathbf{A}
B) double the flux through hemisphere \mathbf{A}
C) four times the flux through hemisphere \mathbf{A}
D) zero
E) half the flux through hemisphere \mathbf{A}

Q8. Consider three infinite non-conducting sheets with uniform charge densities ($-\sigma,+2 \sigma,+3 \sigma$), as shown in cross section in FIGURE 7. The electric field between plates A and B is given by

Fig\#
$-\sigma$

A) $\frac{3 \sigma}{\varepsilon_{o}}$ to the left
B) $\frac{6 \sigma}{\varepsilon_{o}}$ to the left
C) $\frac{3 \sigma}{\varepsilon_{o}}$ to the right
D) $\frac{6 \sigma}{\varepsilon_{o}}$ to the right
E) $\frac{\sigma}{\varepsilon_{o}}$ to the right

Q9. Two infinite wires are charged with uniform and opposite linear charge densities $+\lambda$ and $-\lambda$, where $\lambda=1.00 \mathrm{nC} / \mathrm{m}$, as shown in FIGURE 8. The flux of the electric field through the Gaussian cylindrical surface (S) is

Fig\#

$+\lambda$
A) $+2.26 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B) $-2.26 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C) $+113 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D) $-113 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E) zero

Q10. A point charge $\mathrm{q}=-1.0 \times 10^{-10} \mathrm{C}$ is placed at the center of a spherical conducting shell that has a total charge $\mathrm{Q}=5.0 \times 10^{-10} \mathrm{C}$, as shown in FIGURE 9. The outer surface has radius $\mathrm{R}_{2}=10 \mathrm{~cm}$. The charge density on the external surface is equal to

Fig\#

A) $+3.2 \mathrm{nC} / \mathrm{m}^{2}$
B) $-3.2 \mathrm{nC} / \mathrm{m}^{2}$
C) $+4.0 \mathrm{nC} / \mathrm{m}^{2}$
D) $+0.80 \mathrm{nC} / \mathrm{m}^{2}$
E) $-0.80 \mathrm{nC} / \mathrm{m}^{2}$

Q11. A uniform electric field of magnitude $325 \mathrm{~V} / \mathrm{m}$ is directed in the negative y direction. The coordinates of point A are $(-0.200,-0.300) \mathrm{m}$, and those of point B are $(0.400,0.500) \mathrm{m}$. Calculate the electric potential difference $V_{B}-V_{A}$.
A) +260 V
B) -260 V
C) -195 V
D) +195 V
E) +325 V

Q12. An electron is released from rest at the origin in a uniform electric field that points in the positive x direction and has a magnitude of $850 \mathrm{~N} / \mathrm{C}$. What is the change in the electric potential energy of the electron-field system when the electron moves a distance of 2.5 m ?
A) $-3.4 \times 10^{-16} \mathrm{~J}$
B) $+3.4 \times 10^{-16} \mathrm{~J}$
C) $-1.4 \times 10^{-16} \mathrm{~J}$
D) $+1.4 \times 10^{-16} \mathrm{~J}$
E) $-5.4 \times 10^{-16} \mathrm{~J}$

Q13. Two point charges ($+\mathbf{q}$ and $-\mathbf{q}$) are placed as shown in FIGURE 10. Consider the points $1,2,3$, and 4 that are shown on the figure. At which point is the net electric potential HIGHEST? Take $V=0$ at infinity.

Fig\#

A) 4
B) 3
C) 2
D) 1
E) All points have the same potential

Q14. Four point charges are placed at the corners of a square, as shown in FIGURE 11. The magnitudes of the charges are equal. What is the electric potential energy of the system?

Fig\#

A) zero
B) $+5.4 \mathrm{kQ}^{2} / \mathrm{d}$
C) $+2.6 \mathrm{kQ}^{2} / \mathrm{d}$
D) $-2.6 \mathrm{kQ}^{2} / \mathrm{d}$
E) $+0.71 \mathrm{kQ}^{2} / \mathrm{d}$

Q15. In a certain region of space, the electric potential is given by: $V=2.0 x y z^{2}$, where V is in volts, and x, y, and z are in meters. What is the magnitude of the electric field at the point with position vector $(2.0 \hat{\mathbf{i}}-2.0 \hat{\mathbf{j}}+4.0 \hat{\mathbf{k}})$?
A) $111 \mathrm{~V} / \mathrm{m}$
B) $90.8 \mathrm{~V} / \mathrm{m}$
C) $16.1 \mathrm{~V} / \mathrm{m}$
D) $743 \mathrm{~V} / \mathrm{m}$
E) $571 \mathrm{~V} / \mathrm{m}$

Q16. The electric potential immediately outside a charged conducting sphere is 200 V , and 10 cm farther from the surface of the sphere the potential is 150 V . What is the charge on the sphere?
A) 6.7 nC
B) 0.95 nC
C) 1.3 nC
D) 8.9 nC
E) 5.4 nC

Q17. FIGURE 12 shows a combination of four capacitors $\mathrm{C}_{1}=\mathrm{C}_{3}=8.0 \mu \mathrm{~F}$ and $\mathrm{C}_{2}=\mathrm{C}_{4}=$ $6.0 \mu \mathrm{~F}$ connected to a $12-\mathrm{V}$ battery. Calculate the charge on capacitor C_{1}.

Fig\#

A) $36 \mu \mathrm{C}$
B) $18 \mu \mathrm{C}$
C) $12 \mu \mathrm{C}$
D) $24 \mu \mathrm{C}$
E) $30 \mu \mathrm{C}$

Phys102	Second Major-112	Zero Version
Coordinator:	Monday, April 16, 2012	Page: 7

Q18. A $20-\mathrm{V}$ battery is connected to a series of \mathbf{N} capacitors, each of capacitance $4.0 \mu \mathrm{~F}$. If the total energy stored in the capacitors is $50 \mu \mathrm{~J}$, what is \mathbf{N} ?
A) 16
B) 12
C) 4
D) 10
E) 8

Q19. A $2-\mu \mathrm{F}$ and a $1-\mu \mathrm{F}$ capacitor are connected in series and charged by a battery. They store charges P and Q , respectively. When disconnected and charged separately using the same battery, they have charges R and S, respectively. Then:
A) $\mathrm{R}>\mathrm{S}>\mathrm{P}=\mathrm{Q}$
B) $\mathrm{P}>\mathrm{Q}>\mathrm{R}=\mathrm{S}$
C) $\mathrm{R}>\mathrm{P}>\mathrm{S}=\mathrm{Q}$
D) $\mathrm{R}>\mathrm{Q}>\mathrm{S}=\mathrm{P}$
E) $S>R>P=Q$

Q20. A 2.0-nF parallel plate capacitor is charged using a 12-V battery. The battery is removed and a dielectric of dielectric constant $\kappa=3.5$ is inserted, filling completely the space between the plates of the capacitor. What is the energy stored in the capacitor after inserting the dielectric?
A) $4.1 \times 10^{-8} \mathrm{~J}$
B) $5.0 \times 10^{-5} \mathrm{~J}$
C) $1.4 \times 10^{-7} \mathrm{~J}$
D) $2.4 \times 10^{-8} \mathrm{~J}$
E) $1.0 \times 10^{-6} \mathrm{~J}$

Physics 102

Formula sheet for Second Major

