Phys102	Final-183	Zero Version
	Wednesday, July 31, 2019	Page: 1

Q1.
Standing waves pattern on a 6.00 m long string fixed at both ends is described by the wave function $y=0.002 \sin (\pi x) \cos (100 \pi t)$ where x and y are in meters and t is in seconds. How many loops are there in this standing wave pattern?
A) 6
B) 3
C) 2
D) 4
E) 5

Q2.

A loudspeaker emits sound waves isotropically in all directions. What is the speaker's power output if the sound level is 90 dB at a distance of 20 m from the loud speaker?
A) 5.0 W
B) 3.5 W
C) 1.5 W
D) 4.0 W
E) 2.5 W

Q3.

How many kg of ice at $0^{\circ} \mathrm{C}$ should be mixed with 1.8 kg of water at $80^{\circ} \mathrm{C}$ to bring the final temperature of the mixture to $10^{\circ} \mathrm{C}$?
A) 1.4 kg
B) 2.1 kg
C) 2.4 kg
D) 3.5 kg
E) 1.1 kg

Q4.

2.00 L container of fixed volume holds 3.00 mol of an ideal gas. If 200 J of heat is added to the gas, what is the change in internal energy of the system?
A) 200 J
B) 150 J
C) 100 J
D) 170 J
E) 110 J

Q5.
A monatomic ideal gas expands adiabatically from a volume of 2.0 liters to 6.0 liters. If the initial pressure is P_{0}, what is the final pressure?
A) $0.16 P_{0}$

Phys102	Final-183	Zero Version
	Wednesday, July 31, 2019	Page: 2

B) $9.0 P_{0}$
C) $6.2 P_{0}$
D) $3.0 P_{0}$
E) $0.55 P_{0}$

Q6.
What is the change in entropy of 108 g of silver at a temperature of $961^{\circ} \mathrm{C}$ when it is completely melted ($\mathrm{LF}_{\mathrm{F} \text { - silver }}=8.82 \times 10^{4} \mathrm{~J} / \mathrm{kg}$, $\mathrm{T}_{\text {Melting-silver }}=961^{\circ} \mathrm{C}$).
A) $7.72 \mathrm{~J} / \mathrm{K}$
B) $5.53 \mathrm{~J} / \mathrm{K}$
C) $3.21 \mathrm{~J} / \mathrm{K}$
D) $1.33 \mathrm{~J} / \mathrm{K}$
E) $6.11 \mathrm{~J} / \mathrm{K}$

Q7.

Coefficient of performance of an air conditioner is 2.80 and it operates on 800 W of power.
Calculate the rate at which heat is discharged by the air conditioner to the outside air
A) $3.04 \times 10^{3} \mathrm{~W}$
B) $2.11 \times 10^{3} \mathrm{~W}$
C) $1.35 \times 10^{3} \mathrm{~W}$
D) $1.00 \times 10^{3} \mathrm{~W}$
E) $4.35 \times 10^{3} \mathrm{~W}$

Q8.

Figure 1 shows two charged particles fixed on the x - axis. A third negatively charged particle can be placed at a certain point $(1,2,3$ or 4$)$ on the x-axis so the net electrostatic force on it is zero. Which of the following answers can possibly be the correct position of the third particle?

Fig\#

A) 3
B) 2
C) 1
D) 4
E) None of the any given location

Q9.

An electron with a speed of $8.38 \times 10^{6} \mathrm{~m} / \mathrm{s}$ enters a region of uniform electric field with velocity directed along the electric field. What is the magnitude of the electric field that will stop the electron momentarily at a distance of 0.100 m after entering this region?
A) $2.00 \times 10^{3} \mathrm{~N} / \mathrm{C}$
B) $1.14 \times 10^{3} \mathrm{~N} / \mathrm{C}$
C) $1.32 \times 10^{3} \mathrm{~N} / \mathrm{C}$
D) $2.42 \times 10^{3} \mathrm{~N} / \mathrm{C}$
E) $1.22 \times 10^{3} \mathrm{~N} / \mathrm{C}$

Q10.
What is the magnitude of the electric flux through a horizontal surface of area $225 \mathrm{~cm}^{2}$ placed in an electric field that makes 30.0° angle with the surface as shown in Figure 2?

Fig\#

A) $+2.00 \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}$
B) $+3.55 \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}$
C) $-1.12 \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}$
D) $-2.00 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
E) $-3.55 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$

Q11.

Two particles of charges q_{1} and q_{2} are fixed in position, as shown in Figure 3. A third particle, of charge $+6.0 \mu \mathrm{C}$, is brought from infinity to point P . Three particle system has the same electric potential energy as the initial two-particle system. What is the charge ratio q_{1} / q_{2} ? (Assume potential energy is zero at infinity)

Fig\#

A) -1.4
B) -1.1
C) +1.2
D) -1.8
E) +1.9

Phys102	Final-183	Zero Version
	Wednesday, July 31, 2019	Page: 4

Q12.
A solid conducting sphere of 10 cm radius has a net charge of 20 nC . If the potential at infinity is taken to be zero, what is the potential at the center of the sphere?
A) $1.8 \times 10^{3} \mathrm{~V}$
B) $1.0 \times 10^{3} \mathrm{~V}$
C) $2.6 \times 10^{3} \mathrm{~V}$
D) $3.3 \times 10^{3} \mathrm{~V}$
E) Zero

Q13.

Six capacitors are connected in a circuit as shown in Figure 4. Find the energy stored in the equivalent capacitance of the circuit between points \boldsymbol{a} and \boldsymbol{b} if $\mathrm{C}=1.50 \mu \mathrm{~F}$ and the potential difference $\mathrm{V}_{\mathrm{ab}}=100 \mathrm{~V}$.

Fig\#

A) $5.79 \times 10^{-3} \mathrm{~J}$
B) $1.20 \times 10^{-3} \mathrm{~J}$
C) $2.53 \times 10^{-3} \mathrm{~J}$
D) $3.55 \times 10^{-3} \mathrm{~J}$
E) $4.20 \times 10^{-3} \mathrm{~J}$

Q14.

Magnitude of the drift velocity of conduction electrons in a copper wire is $7.84 \times 10^{-4} \mathrm{~m} / \mathrm{s}$ and the number of conduction electrons per unit volume is $\mathrm{n}=8.46 \times 10^{28} / \mathrm{m}^{3}$. What is the electric field in the wire? $\left(\rho_{\text {Copper }}=1.72 \times 10^{-8} \Omega . \mathrm{m}\right)$?
A) $1.83 \times 10^{-1} \mathrm{~V} / \mathrm{m}$
B) $2.55 \times 10^{-1} \mathrm{~V} / \mathrm{m}$
C) $3.01 \times 10^{-1} \mathrm{~V} / \mathrm{m}$
D) $1.00 \times 10^{-1} \mathrm{~V} / \mathrm{m}$
E) $3.31 \times 10^{-1} \mathrm{~V} / \mathrm{m}$

Q15.

In the circuit shown in Figure 5, a current of 0.25 A is flowing through the resistor R. What is the power dissipated in resistor R ?

Phys102	Final-183	Zero Version
	Wednesday, July 31, 2019	Page: 5

Fig\#

A) 0.38 W
B) 0.55 W
C) 0.11 W
D) 0.73 W
E) 0.92 W

Q16.

Figure 6 shows a circuit where the current in 2.0Ω resistor is 3.0 A . Find the unknown emf ε.

Fig\#

A) 15 V
B) 9.5 V
C) 10 V
D) 12 V
E) 8.8 V

Q17.
For the circuit shown in Figure 7, find the potential difference $\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}$ across the 2.0Ω resistor.

Fig\#

Phys102	Final-183	Zero Version
	Wednesday, July 31, 2019	Page: 6

A) 8.0 V
B) 5.5 V
C) 9.1 V
D) 14 V
E) 10 V

Q18.

A capacitor is being charged through a 12Ω resistor using a 10 V battery. What will be the current in the circuit when the capacitor has acquired $1 / 4$ of its maximum charge?
A) 0.63 A
B) 0.42 A
C) 0.51 A
D) 0.29 A
E) 0.75 A

Q19.
A proton, enters a region of uniform magnetic field $\overrightarrow{\mathbf{B}}$ with a velocity $\overrightarrow{\mathbf{v}}=1.50 \mathrm{~km} / \mathrm{s} \hat{\boldsymbol{i}}$. At that instant it experiences a magnetic force $\overrightarrow{\mathbf{F}}_{\mathrm{B}}=2.25 \times 10^{-16} \mathrm{~N} \hat{\boldsymbol{j}}$. What is the magnetic field $\overrightarrow{\boldsymbol{B}}$? Ignore the gravitational force.
A) $-(0.938 \mathrm{~T}) \hat{k}$
B) $+(0.938 \mathrm{~T}) \hat{k}$
C) $-(0.532 \mathrm{~T}) \hat{k}$
D) $+(0.532 \mathrm{~T}) \hat{k}$
E) $-(0.232 \mathrm{~T}) \hat{\boldsymbol{k}}$

Q20.
A proton moving in the positive x-direction with a speed $v=1.35 \times 10^{6} \mathrm{~m} / \mathrm{s}$ enters the region between the two plates as shown in figure 8. The potential of the top plate is 200 V , and the potential of the bottom plate is 0 V . What is magnetic field, $\overrightarrow{\boldsymbol{B}}$, that is required between the plates so that the proton continues traveling in a straight line in the positive x-direction? Ignore the gravitational force.

Fig\#

A) $-\left(4.23 \times 10^{-3} \mathrm{~T}\right) \hat{k}$
B) $+\left(4.23 \times 10^{-3} \mathrm{~T}\right) \hat{k}$
C) $-\left(1.22 \times 10^{-3} \mathrm{~T}\right) \hat{k}$
D) $+\left(1.22 \times 10^{-3} \mathrm{~T}\right) \hat{\boldsymbol{k}}$

Phys102	Final-183	Zero Version
	Wednesday, July 31, 2019	Page: 7

E) $-\left(6.55 \times 10^{-3} \mathrm{~T}\right) \hat{\boldsymbol{k}}$

Q21.

A charged particle undergoes uniform circular motion of radius $55.0 \mu \mathrm{~m}$ in a uniform magnetic field. The magnetic force on the particle has a magnitude of $2.80 \times 10^{-14} \mathrm{~N}$. What is the kinetic energy of the particle?
A) $7.70 \times 10^{-19} \mathrm{~J}$
B) $1.22 \times 10^{-19} \mathrm{~J}$
C) $2.56 \times 10^{-19} \mathrm{~J}$
D) $3.66 \times 10^{-19} \mathrm{~J}$
E) $5.34 \times 10^{-19} \mathrm{~J}$

Q22.
A triangular loop of wire carrying a current of 0.125 A is placed in a $\mathrm{x}-\mathrm{y}$ plane containing a uniform magnetic field $\overrightarrow{\mathbf{B}}=0.250 \mathrm{~T} \hat{\boldsymbol{i}}$, as shown in Figure 9. Determine the magnitude of the force on loop sides BC and CA , respectively due to the magnetic field.

Fig\#

A) $1.17 \times 10^{-3} \mathrm{~N} ; 3.52 \times 10^{-3} \mathrm{~N}$
B) $1.47 \times 10^{-3} \mathrm{~N} ; 2.22 \times 10^{-3} \mathrm{~N}$
C) $2.22 \times 10^{-3} \mathrm{~N} ; 4.55 \times 10^{-3} \mathrm{~N}$
D) $3.52 \times 10^{-3} \mathrm{~N} ; 4.22 \times 10^{-3} \mathrm{~N}$
E) $4.22 \times 10^{-3} \mathrm{~N} ; 5.32 \times 10^{-3} \mathrm{~N}$

Q23.

A circular loop of radius $r=5.13 \mathrm{~cm}$, has 47 turns. The loop is placed in a uniform magnetic field of magnitude 0.911 T . A current of 1.27 A flows through the loop. What is the maximum torque on the loop due to the magnetic field?
A) 0.450 N.m
B) $0.132 \mathrm{~N} . \mathrm{m}$
C) $0.225 \mathrm{~N} . \mathrm{m}$
D) $0.332 \mathrm{~N} . \mathrm{m}$
E) 0.100 N.m

Q24.

Two long parallel wires, separated by a distance $\mathrm{D}=10.0 \mathrm{~cm}$, each carry a current $\mathrm{I}=5.00 \mathrm{~A}$, in opposite directions as shown in Figure 10. A circular loop, of radius $R=D / 2$, has the same current I flowing in the counterclockwise direction. Determine the magnitude and the direction of the net magnetic field at the center of the loop P due to the current in the loop and in the parallel wires.

Fig\#

A) $1.03 \times 10^{-4} \mathrm{~T}$ out of the page
B) $1.03 \times 10^{-4} \mathrm{~T}$ into the page
C) $2.66 \times 10^{-4} \mathrm{~T}$ out of the page
D) $2.66 \times 10^{-4} \mathrm{~T}$ into the page
E) $3.45 \times 10^{-4} \mathrm{~T}$ out of the page

Q25.

Two long parallel wires are separated by a distance of 3.0 mm . The current flowing in one of the wires is I and in the other wire is 2I. If the magnitude of the force on a 1.0 m length of one of the wires is $7.0 \mu \mathrm{~N}$, what is the magnitude of current I ?
A) 0.23 A
B) 0.10 A
C) 0.44 A
D) 0.54 A
E) 0.96 A

Q26.
A long solenoid with 6.00 cm diameter has 1000 turns per meter of thin wire which carries a current of 0.250 A . A long uniform straight wire carrying a current of 10.0 A is inserted along the axis of the solenoid, as shown in Figure 11. What is the magnitude of the magnetic field at a point 1.00 cm from the axis of the solenoid?

Fig\#

Phys102	Final-183	Zero Version
	Wednesday, July 31, 2019	Page: 9

A) $3.72 \times 10^{-4} \mathrm{~T}$
B) $1.00 \times 10^{-4} \mathrm{~T}$
C) $1.52 \times 10^{-4} \mathrm{~T}$
D) $2.11 \times 10^{-4} \mathrm{~T}$
E) $2.44 \times 10^{-4} \mathrm{~T}$

Q27.

Figure 12 shows cross-sectional view of three wires that carry currents perpendicular to the plane the figure. The currents have magnitudes $\mathrm{I}_{1}=3.0 \mathrm{~A}, \mathrm{I}_{2}=4.0 \mathrm{~A}$ and $\mathrm{I}_{3}=4.0 \mathrm{~A}$ in the directions shown. Four closed paths, labeled a, b, c and d are shown. Rank the magnitude of the line integral $\iint \overrightarrow{\boldsymbol{B}} . d \overrightarrow{\boldsymbol{l}}$ for each path while going around the path in the counterclockwise direction, the greatest first.

Fig\#

A) d, b, c, a
B) a, b, c, d
C) b, c, d, a
D) c, d, a, b
E) b, d, a, c

Q28.

What is the net magnetic flux through the loop shown in Figure 13? Assume the area vector $\overrightarrow{\boldsymbol{A}}$ of the loop points into the page.

Fig\#

A) $4.0 \times 10^{-2} \mathrm{~Wb}$
B) $1.0 \times 10^{-2} \mathrm{~Wb}$
C) $1.5 \times 10^{-2} \mathrm{~Wb}$
D) $2.1 \times 10^{-2} \mathrm{~Wb}$
E) $2.7 \times 10^{-2} \mathrm{~Wb}$

Q29.
A circular wire loop has 4.8 cm radius and an electrical resistance of 0.16Ω. As shown in
Figure 14, the loop is placed in a region where magnetic field $\overrightarrow{\boldsymbol{B}}$ is perpendicular to the loop. The magnetic field has an initial value of 8.0 T and is decreasing at a rate of $0.68 \mathrm{~T} / \mathrm{s}$.
Determine the magnitude and direction of the induced current in the loop?
Fig\#

A) $3.1 \times 10^{-2} \mathrm{~A}$, counterclockwise
B) $3.1 \times 10^{-2} \mathrm{~A}$, clockwise
C) $1.9 \times 10^{-2} \mathrm{~A}$, counterclockwise
D) $1.9 \times 10^{-2} \mathrm{~A}$, clockwise
E) $1.0 \times 10^{-2} \mathrm{~A}$, clockwise

Q30.
A 10 cm long conducting rod moves at a constant speed $\mathrm{v}=0.50 \mathrm{~m} / \mathrm{s}$ on a zero-resistance horizontal wires towards 2.0Ω resistor in a uniform magnetic field $\mathrm{B}=0.50 \mathrm{~T}$, as shown in Figure 15. Find the magnitude of the force acting on the rod?

Fig\#

Phys102	Final-183	Zero Version
	Wednesday, July 31, 2019	Page: 11

A) $6.3 \times 10^{-4} \mathrm{~N}$
B) $2.3 \times 10^{-4} \mathrm{~N}$
C) $1.3 \times 10^{-4} \mathrm{~N}$
D) $3.5 \times 10^{-4} \mathrm{~N}$
E) $4.4 \times 10^{-4} \mathrm{~N}$

