Phys102	Final-181	Zero Version
Coordinator: Kunwar	Saturday, December 15, 2018	Page: 1

O1.

For the wave described by $y = 0.02 \sin(kx)$ at t = 0 s, the first maximum displacement at a positive x coordinate occurs at x = 4 m. Where on the positive x axis does the second maximum displacement occur? (x and y are measured in m)

- A) 20 m
- B) 12 m
- C) 34 m
- D) 48 m
- E) 59 m

Q2.

The sound intensity 5.00 m from a point source is 0.500 W/m². The power output of the source is:

- A) 157 W
- B) 391 W
- C) 710 W
- D) 235 W
- E) 458 W

Q3.

Figure 1 shows four vertical thermometers, labeled W, X, Y, and Z. The freezing and boiling points of water are indicated. Rank the 65 degree temperatures on different scale from **highest to lowest**.

Fig#

- A) 65°Z, 65°W, 65°X, 65°Y
- B) 65°Z, 65°X, 65°W, 65°Y
- C) 65°W, 65°X, 65°Y, 65°Z
- D) 65°Y, 65°W, 65°X, 65°Z
- E) 65°X, 65°Y, 65°Z, 65°W

O4.

The approximate number of air molecules in a 1.00 m³ volume at room temperature (300 K) and atmospheric pressure is: (Assume air to be an ideal gas)

- A) 2.44×10^{25}
- B) 3.30×10^{25}
- C) 1.63×10^{25}

Phys102 Final-181 Zero Version Coordinator: Kunwar Saturday, December 15, 2018 Page: 2

- D) 4.71×10^{25}
- E) 5.49×10^{25}

Q5.

A certain heat engine draws 500 cal/s from a water bath at 27 °C and transfers 400 cal/s to a reservoir at a lower temperature. The efficiency of this engine is:

- A) 20%
- B) 7.5%
- C) 55%
- D) 35%
- E) 10%

Q6.

A particle with a charge of 5×10^{-6} C and a mass of 2.0×10^{-2} kg moves with a constant speed of 7.0 m/s in a circular orbit around a stationary particle with a charge of -5×10^{-6} C. The radius of the orbit is:

- A) 0.23 m
- B) 0.16 m
- C) 0.52 m
- D) 0.65 m
- E) 0.84 m

O7.

A charged oil drop with a mass of 2.00×10^{-4} kg is held in equilibrium in air by a downward electric field of 300 N/C. The charge on the drop is:

- A) -6.53×10^{-6} C
- B) $-1.50 \times 10^{-6} \text{ C}$
- C) $+6.53 \times 10^{-6}$ C
- D) $+1.50 \times 10^{-6}$ C
- E) $+3.57 \times 10^{-6}$ C

Q8.

Two identical large insulating parallel plates carry positive charge of equal magnitude that is distributed uniformly over their inner surfaces as shown in **Figure 2**. Rank the points 1 through 5 according to the magnitude of the electric field at these points, **least to greatest**.

Fig#

- A) (2 and 3) tie, then (1 and 4 and 5) tie
- B) 1, 2, 3, 4, 5
- C) 5, 4, 3, 2, 1
- D) (1 and 4 and 5) tie, then (2 and 3) tie
- E) (2 and 3) tie, then (1 and 4) tie, then 5

Q9.

An isolated solid metal sphere of radius R carries a charge of 3.0 nC. How much charge remains in the sphere of radius R, when it is connected to another uncharged metallic sphere of radius 2R with a thin metallic wire? (Assume no charge remains on the wire and the spheres are far away from each other)

- A) 1.0 nC
- B) 2.0 nC
- C) 6.0 nC
- D) 1.5 nC
- E) 3.0 nC

O10.

Copper contains 8.4×10^{28} free electrons per cubic meter. A copper wire of radius 5.0×10^{-4} m carries a current of 1.0 A. The electron drift speed is:

- A) $9.5 \times 10^{-5} \text{ m/s}$
- B) $1.0 \times 10^{-5} \text{ m/s}$
- C) $6.5 \times 10^{-5} \text{ m/s}$
- D) $3.0 \times 10^{-5} \text{ m/s}$
- E) $5.0 \times 10^{-5} \text{ m/s}$

Q11.

A particle with a charge $q_1 = 5.5 \times 10^{-8}$ C is fixed at the origin. Another particle with a charge $q_2 = -2.3 \times 10^{-8}$ C is moved from position x = 3.5 cm on the x axis to position y = 4.3 cm on the y axis. Find the amount of work required to move the charge.

- A) $+6.0 \times 10^{-5} \text{ J}$
- B) $+3.1 \times 10^{-5} \text{ J}$
- C) $-6.0 \times 10^{-5} \text{ J}$

- D) $-3.1 \times 10^{-5} \text{ J}$
- E) $+2.7 \times 10^{-5} \text{ J}$

Q12.

A parallel-plate capacitor has a plate area of 0.30 m^2 and a plate separation of 0.10 mm. If the charge on each plate has a magnitude of $5.0 \times 10^{-6} \text{ C}$, what is the energy density in its electric field?

- A) 16 J/m^3
- B) 35 J/m^3
- C) 78 J/m^3
- D) 21 J/m^3
- E) 54 J/m^3

Q13.

In **Figure 3** a battery with an emf $\varepsilon_1 = 12$ V and an internal resistance of $r_1 = 1.0 \Omega$ is used to charge a battery with an emf $\varepsilon_2 = 7.0$ V and an internal resistance of $r_2 = 1.0 \Omega$. The current in the circuit is:

Fig#

- A) 2.5 A
- B) 1.0 A
- C) 3.0 A
- D) 4.1 A
- E) 7.5 A

Q14.

Two light bulbs, with power ratings 40 W and 100 W, are connected in series to a 110 V source. Then which of the following statements is **TRUE**?

- A) the current in the 100 W bulb is same as that in the 40 W bulb
- B) the current in the 100 W bulb is less than that in the 40 W bulb
- C) the voltage drop across the 100 W bulb is same as that in the 40 W bulb
- D) both bulbs have same energy dissipation rate
- E) the current in the 100 W bulb is greater than that in the 40 W bulb

Phys102	Final-181	Zero Version
Coordinator: Kunwar	Saturday, December 15, 2018	Page: 5

Q15.

Find the equivalent resistance across points a and b in the circuit shown in Figure 4.

Fig#

- A) 2Ω
- B) 4 Ω
- C) 1Ω
- D) 6Ω
- E) 3 Ω

Q16.

In the circuit diagram of **Figure 5**, if the current i = 0.5 A, find the potential difference $V_b - V_a$.

Fig#

- A) 5.0 V
- B) 4.0 V
- C) 1.0 V
- D) 2.0 V
- E) 8.0 V

Q17.

A segment of a circuit diagram is shown in **Figure 6**. At a particular instant, if $R = 2.0 \text{ k}\Omega$, C = 4.0 mF, $\varepsilon = 8.0 \text{ V}$, Q = 20 mC, and i = 3.0 mA, what is the potential difference $V_a - V_b$?

Fig#

- A) -9.0 V
- B) +7.0 V
- C) -7.0 V
- D) +5.0 V
- E) +9.0 V

Q18.

An electron is travelling with constant velocity \vec{v} in a region of uniform electric field \vec{E} and the uniform magnetic field \vec{B} , as shown in **Figure 7. F**ind the direction of the magnetic field \vec{B} .

Fig#

- A) the negative z direction (into the page)
- B) the negative y direction
- C) the positive *y* direction
- D) the positive z direction (out of the page)
- E) the negative x direction

Q19.

An electron has a velocity of 6.0×10^6 m/s in the positive *x* direction at a point where the magnetic field has components $B_x = 3.0$ T, $B_y = 1.5$ T, and $B_z = 2.0$ T. What is the magnitude of the acceleration of the electron at this point?

- A) $2.6 \times 10^{18} \text{ m/s}^2$
- B) $3.4 \times 10^{18} \text{ m/s}^2$
- C) $6.0 \times 10^{18} \,\text{m/s}^2$
- D) $1.2 \times 10^{18} \text{ m/s}^2$
- E) $5.8 \times 10^{18} \,\mathrm{m/s^2}$

Q20.

Figure 8 shows a loop of wire carrying a current i = 2.0 A is in the shape of a right triangle with two equal sides, each 15 cm long. A uniform magnetic field B = 0.7 T is in the plane of the triangle and is perpendicular to the hypotenuse. The resultant magnetic force on the two equal sides has a magnitude of:

- A) 0.30 N
- B) 0.21 N
- C) 0.12 N
- D) 0.45 N
- E) 0.57 N

Q21.

A loop of current-carrying wire has a magnetic dipole moment of $5.0 \times 10^{-4}~\text{A}\cdot\text{m}^2$. The dipole moment is initially aligned with a 0.50 T magnetic field. To rotate the loop so that its dipole moment becomes perpendicular to the field, you must do work of:

- A) $+2.5 \times 10^{-4} \text{ J}$
- B) zero
- C) $-2.5 \times 10^{-4} \text{ J}$
- D) $+1.0 \times 10^{-3} \text{ J}$
- E) $-1.0 \times 10^{-3} \text{ J}$

Q22.

A long wire of radius R = 4.5 cm carries a uniform current throughout its cross-section. If the magnetic field inside the wire at 3.0 cm from the center is equal to three times the magnetic field at a distance r from the center, where r > R, calculate the distance r.

- A) 20 cm
- B) 35 cm
- C) 13 cm
- D) 46 cm
- E) 54 cm

Phys102 Final-181 Zero Version Coordinator: Kunwar Saturday, December 15, 2018 Page: 8

Q23.

Two long vertical wires pierce (penetrate) the horizontal plane of the paper at the vertices of an equilateral triangle, each carrying 2.0 A current, one out of the paper and the other into the paper, as shown in **Figure 9**. The magnetic field at point P has a magnitude of:

Fig#

- A) $1.0 \times 10^{-5} \text{ T}$
- B) $8.2 \times 10^{-5} \text{ T}$
- C) $1.7 \times 10^{-5} \text{ T}$
- D) $5.5 \times 10^{-5} \text{ T}$
- E) $2.9 \times 10^{-5} \text{ T}$

Q24.

Two long parallel wires X and Y are separated by 4.0 cm and carry currents 20 A and 30 A, respectively, along the same direction. Determine the magnitude of the magnetic force on a 2.0 m length of wire Y.

- A) $6.0 \times 10^{-3} \text{ N}$
- B) $4.0 \times 10^{-3} \text{ N}$
- C) $2.0 \times 10^{-3} \text{ N}$
- D) $3.0 \times 10^{-3} \text{ N}$
- E) $7.0 \times 10^{-3} \text{ N}$

Q25.

In **Figure 10**, part of a long insulated wire carrying current i = 5.0 A is bent into a circular section of radius R = 0.1 m. What is the magnetic field at the center C of the circular section?

Fig#

- A) 4.1×10^{-5} T out of the page
- B) 4.1×10^{-5} T into the page
- C) 5.5×10^{-5} T into the page

- D) 5.5×10^{-5} T out of the page
- E) 3.7×10^{-5} T out of the page

O26.

Figure 11 shows the cross-sectional view of three wires carrying identical currents i and four Amperian loops (a through d) encircling them. Rank the loops according to the magnitude of $\oint \vec{B} \cdot d\vec{s}$ along each, **greatest first**.

Fig#

- A) d, (a and c) tie, then b
- B) a, b, c and d
- C) d, (a and b) tie, then c
- D) c, (a and b) tie, d
- E) b, a, d, c

O27.

A square loop (length along one side = 20 cm) rotates in a constant magnetic field which has a magnitude of 2.0 T. At an instant when the angle between the magnetic field and the normal to the plane of the loop is equal to 20° and increasing at a rate of 0.18 rad/s, what is the magnitude of the induced emf in the loop?

- A) 4.9 mV
- B) 1.3 mV
- C) 3.5 mV
- D) 2.1 mV
- E) 5.2 mV

O28.

A long straight wire is in the plane of two circular conducting loops. The straight wire carries a constant current I in the direction shown in **Figure 12**. The circular loop 1 is moved to the right while the loop 2 is moved to the left with the same speed, v. The direction of the induced current in the circular loops 1 and 2 are respectively:

Fig#

Phys102 Final-181 Zero Version
Coordinator: Kunwar Saturday, December 15, 2018 Page: 10

- A) counter-clockwise, clockwise
- B) counter-clockwise, counter-clockwise
- C) clockwise, clockwise
- D) clockwise, counter-clockwise
- E) no direction because induced current is zero

O29.

A long solenoid (n = 1500 turns/m) has a cross-sectional area of 0.40 m² and a current given by $I = (4.0 + 3.0t^2)$ A, where t is in seconds. A flat circular coil (N = 300 turns) with a cross-sectional area of 0.15 m² is inside and coaxial with the solenoid. What is the magnitude of the emf induced in the coil at t = 2.0 s?

- A) 1.0 V
- B) 2.0 V
- C) 1.5 V
- D) 2.5 V
- E) 3.5 V

O30.

In the arrangement shown in **Figure 13**, a conducting bar of negligible resistance slides along horizontal, parallel, and frictionless conducting rails connected as shown to a 2.0 Ω resistor. A uniform 1.5 T magnetic field is perpendicular to the plane of the paper. If L = 60 cm, at what rate is thermal energy being generated in the resistor at the instant the speed of the bar v = 4.2 m/s?

Fig#

- A) 7.1 W
- B) 2.6 W
- C) 5.0 W
- D) 1.2 W
- E) 3.6 W