Final T-041

1 Q0 The tension in a 60 m telephone wire is 800 N . A pulse initiated
$17 Q 0$ at one end of the wire is found to reach the other end in 1.5 s .
6 Q0 What is the mass of the wire?
Q0
A1 30 kg .
A2 60 kg .
A3 15 kg .
A4 40 kg .
A5 50 kg .
Q0
2 Q0 The intensity level of sound from 10 persons each of intensity
18Q0 level 60 dB is
5 Q0
Q0
A1 70 dB .
A2 600 dB .
A3 120 dB .
A4 300 dB .
A5
Q0
3 Q0 Air is injected from a cylinder of compressed air into a
19Q0 spherical balloon of initial volume V, causing its diameter
10 Q0 to double. What is the work done at constant pressure P ?
Q0
A1
A2
A3
A4
A5 Q0
4 Q0 19Q0
4 Q0
A1
A2
A3
A4
A5
Q0
5 Q0 The wall of a home is 0.2 m thick, 2.0 m high, 10 m wide and
19Q0 has a thermal conductivity of 0.4 watt/m/K. If the inside
11 Q0 temperature is 15 degrees Celsius and the outside temperature is -5.0 degrees Celsius, how much energy is lost in 12 hours?
Q0
A1
A2
A3
A4
A5
Q0
6 Q0
5 Q0 factor of 4. What happens to the pressure of the gas?
7.0*P*V.
8.0*P*V.
1. $0^{*} P^{*} V$.
3.0*P*V.
4.0*P*V.
The temperature difference of 45 Celsius degrees is equivalent to
81 Fahrenheit degrees.
81 Kelvin.
25 Fahrenheit degrees.
25 Kelvin.
11 Fahrenheit degrees.
3.4*10**7 J.
4.5*10**6 J.
4.5*10**5 J.
4.5*10**6 J.
$2.7 * 10 * * 7 \mathrm{~J}$.
The average translational kinetic energy of the molecules of
an ideal gas in a closed, rigid container is increased by a
factor of 4 . What happens to the pressure of the gas?
it increases by a factor of 4.

```
    A2
    A3
    A4
    A5
    Q0
Q0
A1
A2
A3
A4
A5
Q0
Q0
A1
A2
A3
A4
A5
Q0
10 00
25 Q0
2 Q0
    Q0
    Q0
A1 }
A2 4
A3 3
A4
Q0
A1
A2
A3
A4
A5
Q0
```

```
7 Q0 A sample of an ideal gas exerts a pressure of 60 Pa when its
```

7 Q0 A sample of an ideal gas exerts a pressure of 60 Pa when its
20 Q0 temperature is 400 K and the number of molecules present per
20 Q0 temperature is 400 K and the number of molecules present per
2 Q0 unit volume is n. A second sample of the same gas exerts a
2 Q0 unit volume is n. A second sample of the same gas exerts a
Q0 pressure of 30 Pa when its temperature is 300 K. How many
Q0 pressure of 30 Pa when its temperature is 300 K. How many
Q0 molecules are present per unit volume of the second sample?
Q0 molecules are present per unit volume of the second sample?
8 ~ Q 0 ~ W h a t ~ i s ~ t h e ~ c o e f f i c i e n t ~ o f ~ p e r f o r m a n c e ~ o f ~ a n ~ i d e a l
8 ~ Q 0 ~ W h a t ~ i s ~ t h e ~ c o e f f i c i e n t ~ o f ~ p e r f o r m a n c e ~ o f ~ a n ~ i d e a l
21 Q0 refrigerator if the temperatures of the two reservoirs are
21 Q0 refrigerator if the temperatures of the two reservoirs are
5 Q0 -10 degrees Celsius and 27 degrees Celsius.
5 Q0 -10 degrees Celsius and 27 degrees Celsius.
9 Q0 Two small charges (q1 =1.0*10**(-8) C and q2 =-4.0*10**(-8) C)
9 Q0 Two small charges (q1 =1.0*10**(-8) C and q2 =-4.0*10**(-8) C)
25 Q0 move from an initial separation of 0.02 m to a final separation
25 Q0 move from an initial separation of 0.02 m to a final separation
10 Q0 of 0.01 m. The change in their electrical potential energy is
10 Q0 of 0.01 m. The change in their electrical potential energy is
1 1 ~ Q 0 ~ K i r c h o f f ' s ~ t w o ~ l a w s ~ f o r ~ e l e c t r i c ~ c i r c u i t s ~ c a n ~ b e ~ d e r i v e d ~ b y ~
1 1 ~ Q 0 ~ K i r c h o f f ' s ~ t w o ~ l a w s ~ f o r ~ e l e c t r i c ~ c i r c u i t s ~ c a n ~ b e ~ d e r i v e d ~ b y ~
28 Q0 using certain conservation laws. On which conservation laws
28 Q0 using certain conservation laws. On which conservation laws
3 Q0 do Kirchoff's laws depend?

```
3 Q0 do Kirchoff's laws depend?
```

```
    it increases by a factor of 8.
```

 it increases by a factor of 8.
 it decreases by a factor of 8.
 it decreases by a factor of 8.
 it remains the same.
 it remains the same.
 it decreases by a factor of 4.
 it decreases by a factor of 4.
 2*n/3
2*n/3
3*n/2
3*n/2
n/3
n/3
n/2
n/2
5*n/3
5*n/3
7.1
7.1
6.5
6.5
8.0
8.0
0.5
0.5
1.5
1.5
-1.8*10**(-4) J.
-1.8*10**(-4) J.
1.8*10**(-4) J.
1.8*10**(-4) J.
-3.2*10**(-4) J.
-3.2*10**(-4) J.
3.2*10**(-4) J.
3.2*10**(-4) J.
-2.7*10**(-4) J.
-2.7*10**(-4) J.
An electrons are accelerated by a potential difference of
An electrons are accelerated by a potential difference of
2000 Volts. If this potential difference is increased to
2000 Volts. If this potential difference is increased to
8 0 0 0 ~ V o l t s , ~ t h e ~ s p e e d ~ o f ~ t h e ~ e l e c t r o n ~ w i l l ~ b e ~ i n c r e a s e d ~ b y
8 0 0 0 ~ V o l t s , ~ t h e ~ s p e e d ~ o f ~ t h e ~ e l e c t r o n ~ w i l l ~ b e ~ i n c r e a s e d ~ b y
a factor of
a factor of
2
2
4
4
3
3
8
8
1.5
1.5
charge ; energy.
charge ; energy.
current ; charge.
current ; charge.
mass ; energy.
mass ; energy.
charge ; mass.
charge ; mass.
current ; angular momentum.

```
current ; angular momentum.
```

12 Q0 The current in single-loop circuit is 5.0 A. When an additional
28 Q0 resistance of 2.0 Ohm is added in series, the current drops to
5 Q0 4.0 A. What was the resistance in the original circuit?
Q0
A1 8.0 Ohm.
A2 6.0 0hm.
A3 4.0 Ohm.
A4 2.0 Ohm.
A5
Q0
13 Q0 Three wires are joined together at a junction. A 0.40-A current
27 Q0 flows toward the junction from one wire and a 0.3-A current
2 Q0 flows away from the junction in the second wire. The current in
Q0 the third wire is
Q0
A1 0.10-A, away from the junction.
A2 0.10-A, toward the junction.
A3 0.70-A, away from the junction.
A4 0.30-A, toward the junction.
A5
Q0
14 Q0 An electrical source with internal resistance $r=2.0$ ohm is used
28 Q0 to operate a lamp of resistance $R=180 h m$. What fraction of the
4 Q0 total power is delivered to the lamp?
Q0
A1
0.9.
1.8.
0.8.
0.2 .
0.5 .

Q0
15 Q0
28 Q0 difference VB-VA. The points A, B and C are three junctions.
5 Q0
Q0
A1
A2
A3
A4
A5
Q0
16 Q0
$\begin{array}{ll}28 & \text { Q0 } \\ 8 & 00\end{array}$ Q0
A1
A2
A3
A4
A5

29 Q0 1
2 Q0 magnetic field of $3.0^{*} 10^{* *}(-4) \mathrm{T}$. The magnetic force on the Q0 electron is
Q0
A1
4.8*10** (-16), north.
4.8*10**(-16), south.

A3 4.8*10**(-16), west.
A4 1.6*10**(-16), north.
A5 1.6*10**(-16), south.

Q0
18 Q0 A circular area with a radius of 8.0 cm lies in the $x y-p l a n e$.
31 Q0 What is the magnitude of the magnetic flux through this circle
3 Q0 due to a uniform magnetic field of 0.5 T at an angle of
Q0 30 degrees from the positive z-axis?.
Q0
A1 8.7*10**(-3) Wb.
A2 4.3*10** (-3) Wb.
A3
A4
A5
Q0
29 Q0 Then it passes normally through a region of magnetic field,
5 Q0 where it moves in a circular path with radius 0.2 m . What is
Q0 the magnitude of the magnetic field?
Q0
A1 7.5*10** (-4) T.
A2
A3
A4
A5
Q0
20 Q0
29 Q0 to a 2.0 T magnetic field. The loop carries a current of 6.0 A .
8 Q0 Calculate the magnitude of the torque acts on the loop.
Q0
A1
A2
A3
A4
A5
4.8*10** (-3) N*m.
1.0*10** (-3) N*m.
3.6*10** (-3) N*m.
2.4*10** (-3) N*m.
zero.
A charged particle is placed in a region of space and it
experiences a force only when it is in motion. It can be
conclude that the region encloses
A magnetic field only.
An electric field only.
Both a magnetic field and an electric field.
Both a magnetic field and a gravitational field.
Both a gravitational field and an electric field.
An electric field and a magnetic field normal to each other.
force, calculate the electron speed.
2.0*10** $6 \mathrm{~m} / \mathrm{s}$.
3. 0 * $10^{* *} 9 \mathrm{~m} / \mathrm{s}$.
1.2*10**6 m/s.
$5.2 * 10^{* *} 7 \mathrm{~m} / \mathrm{s}$.
8.0*10**6 m/s.
Two long wires are parallel to the z-axis as shown in figure 2.

30 Q0 Find the resultant magnetic field at the origin, given that the
1 Q0 wires carry equal current I and moves in the same direction.
Q0 [Take $\mathrm{I}=1.0 \mathrm{~A}$ and $\mathrm{a}=0.5 \mathrm{~m}$]
Q0
A1
A2
A3
A4
A5
Q0
24 Q0 A solenoid has length $\mathrm{L}=2.0 \mathrm{~m}$ and diameter $\mathrm{d}=4.0 \mathrm{~cm}$, and it
30 Q0 carries a current $\mathrm{I}=6.0 \mathrm{~A}$. It consists of seven closed packed
4 Q0 layers, each with 90 turns along length L. What is B at its
Q0
Q0
A1
A2
A3
A4
A5
Q0

```
    Q0
    A1
    A2
    A3
    A4
    A5
    Q0
29 Q0 A circular wire loop, of an area 0.10 m**2, is initially
3 1 ~ Q 0 ~ o r i e n t e d ~ s o ~ t h a t ~ i t s ~ p l a n e ~ i s ~ p e r p e n d i c u l a r ~ t o ~ a ~ 0 . 4 0 ~ T ~ m a g n e t i c
3 Q0 field. When the loop is rotated so that its plane is parallel to
    Q0 the field, a 25 V average potential difference is induced across
    Q0 the loop. The time (in seconds) required to make this rotation
    Q0 of the loop is
    Q0
    A1 1.6*10**(-3).
    A2 4.5*10**(-3).
    A3 1.2*10**(-3).
    A4 3.3*10**(-3).
    A5
    Q0
30 Q0 A 2.0 m long copper wire, with resistance 5.0 Ohm, is formed
3 1 ~ Q 0 ~ i n t o ~ a ~ s q u a r e ~ l o o p ~ a n d ~ p l a c e d ~ p e r p e n d i c u l a r ~ t o ~ a ~ u n i f o r m
5 ~ Q 0 ~ m a g n e t i c ~ f i e l d ~ t h a t ~ i s ~ i n c r e a s i n g ~ a t ~ t h e ~ c o n s t a n t ~ r a t e ~ o f ~
    10.0 mT/s, at what rate is thermal energy generated in the loop?
    Q0
        A1 1.3*10**(-6) W.
    A2 4.5*10**(-6) W.
    A3 3.2*10**(-3) W.
    A4 2.1*10**(-4) W.
    A5
        No force acts.
        The force acts radially inwards.
        The force acts radially outwards.
        The force acts in the direction of motion.
        The force acts in the opposite direction of motion.
        1.0*10**(-3).
        0.1*10**(-6) W.
```


Figure (1)

