Q1.

A sinusoidal wave with an amplitude of 1.00 m and a frequency of 100 Hz travels at $200 \mathrm{~m} / \mathrm{s}$ in the positive x-direction. At $t=0 \mathrm{~s}$, the point at $x=1.00 \mathrm{~m}$ has positive maximum displacement. Which of the following equations represent the wave displacement as it travels.
A) $\mathrm{y}(x, t)=(1.00 \mathrm{~m}) \sin [\pi x-(200 \pi) t-\pi / 2]$
B) $\mathrm{y}(x, t)=(1.00 \mathrm{~m}) \sin [\pi x+(200 \pi)) t]$
C) $\mathrm{y}(x, t)=(1.00 \mathrm{~m}) \sin [\pi x-(100 \pi) t-\pi / 2]$
D) $\mathrm{y}(x, t)=(1.00 \mathrm{~m}) \sin [\pi x-(100 \pi) t]$
E) $\mathrm{y}(x, t)=(1.00 \mathrm{~m}) \sin [\pi x+(300 \pi) t+\pi / 2]$

Ans:

$$
\begin{aligned}
& y(x, t)=y_{m} \sin (k x-\omega t+\phi) \\
& \omega=2 \pi f=2 \pi \times 100=200 \pi \\
& k=\frac{\omega}{v}=\frac{200 \pi}{200}=\pi \\
& \text { at } t=0, x=1.0 m, y(1,0)=1.0 m \\
& y(1,0)=y_{m} \sin (k x+\phi) \Rightarrow 1=1 \sin (\pi+\phi) \\
& \phi=\sin ^{-1}\left(\frac{y(1,0)}{y_{m}}\right)-\pi=\frac{\pi}{2}-\pi=-\frac{\pi}{2} \\
& y(x, t)=y_{m} \sin \left(k x-\omega t-\frac{\pi}{2}\right)
\end{aligned}
$$

Q2.
A string with linear mass density $2.00 \mathrm{~g} / \mathrm{m}$ is stretched along the x-axis with a tension of 5.00 N . The string is tied at one end to a 100 Hz simple harmonic oscillator that vibrates perpendicular to the string with an amplitude of 2.00 mm . The average power transported by the wave is:
A) 0.079 W
B) 1.34 W
C) 0.834 W
D) 1.78 W
E) 2.45 W

Ans:

$$
\begin{aligned}
& P_{\text {avg }}=\frac{1}{2} \mu v \omega^{2} y_{m}^{2} \Rightarrow v=\sqrt{\frac{\tau}{\mu}}=\sqrt{\frac{5}{2 \times 10^{-3}}}=50 \mathrm{~m} / \mathrm{s} \\
& P_{\text {avg }}=\frac{1}{2} \times 2 \times 10^{-3} \times 50 \times(200 \pi)^{2} \times\left(2 \times 10^{-3}\right)^{2}=0.07887 \mathrm{~W}
\end{aligned}
$$

Q3.
If the frequency of the second-longest wavelength for standing waves on a $240-\mathrm{cm}$ long string that is fixed at both ends is 50 Hz , what is the frequency of the third-longest wavelength?
A) 75 Hz
B) 50 Hz
C) 85 Hz
D) 40 Hz
E) 35 Hz

Ans:

$f_{2}=\frac{2 v}{2 L} ; f_{3}=\frac{3 v}{2 L} ; \frac{f_{3}}{f_{2}}=\frac{3}{2}$
$f_{3}=\frac{3}{2} \times f_{2}=\frac{3}{2} \times 50=75 \mathrm{~Hz}$
Q4.
FIGURE 1 shows a snapshot graph of a wave traveling to the right along a string at 25 m / s. At this instant, what are the velocities of points 1,2 , and 3 on the string, respectively?

Figure 1
A) $-11 \mathrm{~m} / \mathrm{s}, 0,+11 \mathrm{~m} / \mathrm{s}$
B) $-11 \mathrm{~m} / \mathrm{s}, 0,-11 \mathrm{~m} / \mathrm{s}$
C) $0,-11 \mathrm{~m} / \mathrm{s}, 0$
D) $0,+11 \mathrm{~m} / \mathrm{s},-11 \mathrm{~m} / \mathrm{s}$
E) $-19 \mathrm{~m} / \mathrm{s}, 0,+19 \mathrm{~m} / \mathrm{s}$

Ans:

$$
\left|u_{\max }\right|=\omega y_{m}=2 \pi f y_{m}
$$

$f=\frac{v}{\lambda}=\frac{25}{0.3}=83.33 \mathrm{~m} / \mathrm{s}$
$\left|u_{\max }\right|=2 \pi \times 83.33 \times 2 \times 10^{-2}=10.47 \mathrm{~m} / \mathrm{s}=11 \mathrm{~m} / \mathrm{s}$

Q5.
Two transmitters, S_{1} and S_{2}, shown in the FIGURE 2, emit identical sound waves at a frequency of 686 Hz . The transmitters are separated by a distance of 2.0 m . Consider a big circle of radius R with its center halfway between these transmitters. How many interference maxima are there on this big circle?

Figure $2 \Delta L=2.0 m=4 \lambda$
A) 16
B) 12
C) 14
D) 18
E) 10

Ans:
$\lambda=\frac{v}{f}=\frac{343}{686}=0.5 \mathrm{~m}$
Number of Maxima $=16$

Q6.

A tube closed at one end resonates in the standing wave pattern shown in the FIGURE
3. If the frequency of the emitted sound is 858 Hz , what is the length of the tube?
A) 0.500 m
B) 0.300 m
C) 1.50 m
D) 1.00 m

Figure 3
E) 2.00 m

Ans:

$$
\begin{aligned}
& f_{5}=\frac{5 v}{4 L} \\
& L=\frac{5 v}{4 f_{5}}=\frac{5 \times 343}{4 \times 858}=0.5 \mathrm{~m}
\end{aligned}
$$

Q7.
Two cars are approaching each other at the same speed when one of the drivers sounds the horn of his car, which has a frequency of 500 Hz . The other driver hears the frequency as 520 Hz . What is the speed of the cars?
A) $6.73 \mathrm{~m} / \mathrm{s}$
B) $13.1 \mathrm{~m} / \mathrm{s}$
C) $2.54 \mathrm{~m} / \mathrm{s}$
D) $1.55 \mathrm{~m} / \mathrm{s}$
E) $5.45 \mathrm{~m} / \mathrm{s}$

Ans:

$$
\begin{aligned}
& f^{\prime}=f_{0}\left(\frac{v+v_{D}}{v-v_{s}}\right)=f_{0}\left(\frac{v+v_{c}}{v-v_{c}}\right)=500\left(\frac{343+v_{c}}{343-v_{c}}\right)=520 \\
& \frac{520}{500}=\frac{343+v_{c}}{343-v_{c}} \\
& 1.04\left(343-v_{c}\right)=343+v_{c} \\
& v_{c}=\frac{13.72}{2.04}=6.73 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Q8.

A source emits sound with equal intensity in all directions. If the displacement amplitude is tripled, the sound level increases by:
A) 9.54 dB
B) 8.45 dB
C) 10.5 dB
D) 7.50 dB
E) 6.00 dB

Ans:

$$
\begin{aligned}
& I \propto s_{m}^{2} \Rightarrow \frac{I_{2}}{I_{1}}=\frac{s_{m 1}^{2}}{s_{m 2}^{2}}=9 \\
& \Delta \beta=10\left[\log \left[\frac{I_{2}}{I_{0}}\right]-\log \left[\frac{I_{1}}{I_{0}}\right]\right]=10\left[\log 9+\log \left[\frac{I_{1}}{I_{0}}\right]-\log \left[\frac{I_{2}}{I_{0}}\right]\right] \\
& \Delta \beta=10 \times \log _{10}(9)=9.54 \mathrm{~dB}
\end{aligned}
$$

Q9.
An ideal gas expands from the state $A\left(p_{1}, V_{1}\right)$ to the state $B\left(p_{2}, V_{2}\right)$, where $p_{2}=2 p_{1}$ and $V_{2}=2 V_{1}$ via paths $A B$ and $A C B$, as shown in FIGURE 4. Find the path which requires more heat and the heat difference between the two paths, respectively?

Figure 4
A) Path $A C B,+p_{1} V_{l} / 2$
B) Path $A C B,-p_{I} V_{I} / 2$
C) Path $A B,+3 p_{l} V_{l} / 2$
D) Path $A B,-3 p_{1} V_{l} / 2$
E) Path $A C B,+2 p_{I} V_{I}$

Ans:

$$
\begin{aligned}
& \Delta E_{A B}=Q_{A C B}-W_{A C B}=Q_{A B}-W_{A B} \\
& Q_{A C B}-Q_{A B}=W_{A C B}-W_{A B} \\
& W_{A C B}=2 P_{1}\left(2 V_{1}-V_{1}\right)=2 P_{1} V_{1} \\
& W_{A B}=P_{1}\left(2 V_{1}-V_{1}\right)+\frac{P_{1}}{2}\left(2 V_{1}-V_{1}\right) \\
& \begin{array}{l}
W_{A B}=P_{1} V_{1}+\frac{P_{1} V_{1}}{2}=\frac{3}{2} P_{1} V_{1} \\
Q_{A C B}-Q_{A B}=W_{A C B}-W_{A B} \\
\quad=2 P_{1} V_{1}-\frac{3}{2} P_{1} V_{1}=\frac{+P_{1} V_{1}}{2}
\end{array}
\end{aligned}
$$

Q10.

A glass container whose volume is 1.00 L at $0.00^{\circ} \mathrm{C}$ is completely filled with a liquid at this temperature. When the filled container is warmed to $55.0^{\circ} \mathrm{C}$, a volume of 8.95 cm^{3} of the liquid overflow. If the coefficient of linear expansion of glass is 5.67×10^{-6} $/ \mathrm{C}^{\circ}$, then find the coefficient of volume expansion of the liquid.
A) $18.0 \times 10^{-5} / \mathrm{C}^{\circ}$
B) $2.20 \times 10^{-5} / \mathrm{C}^{\circ}$
C) $7.65 \times 10^{-5} / \mathrm{C}^{\circ}$
D) $11.5 \times 10^{-5} / \mathrm{C}^{\circ}$
E) $14.1 \times 10^{-5} / \mathrm{C}^{\circ}$

Ans:
$\Delta V_{\text {overflow }}=\Delta V_{\text {liquid }}-\Delta V_{\text {glass }}=V_{0} \Delta T\left(\beta_{\text {liquid }}-\beta_{\text {glass }}\right)$
$\beta_{\text {liquid }}=\frac{\Delta V_{\text {overflow }}}{V_{0} \times \Delta T}+\beta_{\text {glass }}=\frac{8.95}{10^{3} \times 55}+3 \times 5.67 \times 10^{-6}$
$\beta_{\text {liquid }}=17.97 \times 10^{-5}=18.0 \times 10^{-5} / C^{\circ}$

Q11.

A block of mass 125 g at a temperature of $90.0^{\circ} \mathrm{C}$ is placed in a cup containing 0.326 kg of water at $20.0^{\circ} \mathrm{C}$. The block and the water reach an equilibrium temperature of $22.4^{\circ} \mathrm{C}$. Neglecting the heat capacity of the cup, find the specific heat of the block.
A) $388 \mathrm{~J} / \mathrm{kg} . \mathrm{C}^{\circ}$
B) $431 \mathrm{~J} / \mathrm{kg} . \mathrm{C}^{\circ}$
C) $453 \mathrm{~J} / \mathrm{kg} . \mathrm{C}^{\circ}$
D) $712 \mathrm{~J} / \mathrm{kg} . \mathrm{C}^{\circ}$
E) $600 \mathrm{~J} / \mathrm{kg} . \mathrm{C}^{\circ}$

Ans:

$$
C_{b}=\frac{m_{w} \times c_{w} \times(22.4-20)}{m_{b} \times(90-22.4)}=\frac{0.326 \times 4187 \times(2.4)}{0.125 \times 67.6}=387.7 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{C}^{\circ}
$$

Q12.

As shown in FIGURE 5, when a system is taken from state a to state b along the path acb, 90 J of heat flows into the system and 60 J of work is done by the system. How much heat flows into the system along path $a d b$ if the work done by the system is 15 J ?

Figure 5
A) +45 J
B) +60 J
C) +30 J
D) -30 J
E) -45 J

Ans:

$$
\begin{aligned}
& \Delta E_{a b}=Q_{a c b}-W_{a c b}=Q_{a d b}-W_{a d b} \\
& \Delta E_{a b}=Q_{a c b}-W_{a c b}=90-60=30 \mathrm{~J} \\
& Q_{a d b}=\Delta E_{a b}+W_{a d b}=30+15=45 \mathrm{~J}
\end{aligned}
$$

Q13.

One mole of an ideal monatomic gas is taken along the path $a b$ shown as the solid line in FIGURE 6. Find the amount of heat that is transferred into or out of the gas along the path $a b$.

Figure 6
A) $-7.49 \times 10^{2} \mathrm{~J}$
B) $+3.00 \times 10^{2}$ J
C) $-2.22 \times 10^{2} \mathrm{~J}$
D) $+5.01 \times 10^{2}$ J
E) $-6.22 \times 10^{2} \mathrm{~J}$

Ans:

$\Delta E_{a b}=Q_{a b}-W_{a b}$
$Q_{a b}=\Delta E_{i n t-a b}+W_{a b}$
$\Delta E_{\text {int }-a b}=n C_{v}\left(T_{b}-T_{a}\right)=n \cdot \frac{3}{2} R\left(\frac{P_{b} V_{b}}{n R}-\frac{P_{a} V_{a}}{n R}\right)$
$=\frac{3}{2}\left(P_{b} V_{b}-P_{a} V_{a}\right)=\frac{3}{2}\left(10^{5} \times 0.01-3.5 \times 10^{5} \times 0.006\right)$
$\Delta E_{\text {int }-a b}=-1650 \mathrm{~J}$
$W_{a b}=10^{5} \times(0.01-0.006)+\frac{(0.01-0.006) \times 2.5 \times 10^{5}}{2}=400+500=900 \mathrm{~J}$
$Q_{a b}=-1650+900=-750 \mathrm{~J}$

Q14.

A sample of argon gas (molar mass 40 g) is at four times the absolute temperature of a sample of hydrogen gas (molar mass 2 g). The ratio of the rms speed of the hydrogen molecules to that of the argon is:
A) $\sqrt{5}$
B) 1
C) $1 / 5$
D) 5
E) $1 / \sqrt{5}$

Ans:

$$
\frac{v_{r m s-H}}{v_{r m s-A}}=\sqrt{\frac{T_{H}}{T_{A}} \times \frac{M_{A}}{M_{H}}}=\sqrt{\frac{1}{4} \times 20}=\sqrt{5}
$$

Q15.

Two moles of an ideal monatomic gas go through the cycle $a b c a$. For the complete cycle, 800 J of heat flows out of the gas. Process $a b$ is at constant pressure, and process $b c$ is at constant volume. States a and b have temperatures $T_{a}=200 \mathrm{~K}$ and T_{b} $=300 \mathrm{~K}$, respectively. Find the work W for the process $c a$.
A) -2463 J
B) +1985 J
C) +1677 J
D) -2233 J
E) -800.0 J

Ans:

For complete cycle abca $W_{a b c a}=-Q_{a b c a}=-800 \mathrm{~J}$
$W_{a b c a}=W_{a b}+W_{b c}+W_{c a}=n R\left(T_{b}-T_{a}\right)+0+W_{c a}$
$W_{c a}=W_{a b c a}-n R(300-200)=-800-2 \times 8.314 \times 100$
$W_{c a}=-2462.8 \mathrm{~J}$
Q16.
The volume of an ideal gas is halved during an adiabatic compression that increases the pressure by a factor of 2.5 . By what factor does the temperature increase?
A) 1.3
B) 1.9
C) 2.5
D) 1.7
E) 2.2

Ans:

$$
\begin{aligned}
& P_{i} \mathrm{~V}_{i}^{\gamma}=P_{f} \mathrm{~V}_{f}^{\gamma} \Rightarrow \frac{P_{i}}{P_{f}}=\left(\frac{V_{f}}{V_{i}}\right)^{\gamma} \Rightarrow \gamma=\frac{l_{n}\left(\frac{P_{i}}{P_{f}}\right)}{l_{n}\left(\frac{V_{f}}{V_{i}}\right)}=\frac{l_{n}\left(\frac{1}{2.5}\right)}{l_{n}\left(\frac{1}{2}\right)} \\
& \gamma=\frac{-0.916}{-0.693}=1.32 \\
& \frac{T_{f}}{T_{i}}=\left(\frac{V_{i}}{V_{f}}\right)^{\gamma-1}=(2)^{0.32}=1.248=1.3
\end{aligned}
$$

Q17.

Three Carnot engines operate between the two temperature limits of (a) 400 and 500 K, (b) 500 and 600 K , and (c) 400 and 600 K , respectively. Each engine extracts the same amount of energy per cycle from the high-temperature reservoir. Rank the magnitudes of the work done by the engines per cycle, greatest first.
A) c, a, b
B) a, b, c
C) b, c, a
D) $\mathrm{c}, \mathrm{b}, \mathrm{a}$
E) a, c, b

Ans:

$W=Q_{H} \varepsilon_{c}=\frac{T_{H}-T_{L}}{T_{H}} \cdot Q_{H}$
$\varepsilon_{c-a}=\frac{500-400}{500}=0.2$
$\varepsilon_{c-b}=\frac{600-500}{600}=0.167$
$\varepsilon_{c-c}=\frac{600-400}{600}=0.33$
$\mathrm{c}, \mathrm{a}, \mathrm{b}$

Q18.

FIGURE 7 shows a Carnot cycle on a T - S diagram, with a scale set by $S_{s}=0.60 \mathrm{~J} / \mathrm{K}$.
For a full cycle, find the net work done by the system.
A) 75 J
B) 22 J
C) 99 J
D) 31 J
E) 55 J

Ans:
For complete cycle $Q_{\text {net }}-W_{\text {net }}=\Delta S=0$

$$
\begin{aligned}
W_{n e t} & =Q_{n e t}=\int T d s=\text { Area } \\
& =150 \times 0.5=75 \mathrm{~J}
\end{aligned}
$$

Figure 7

Entropy (J/K)

Q19.

5.0 mol of an ideal monatomic gas undergoes a constant pressure process at a pressure of 2.0 atm from an initial volume of $0.5 \mathrm{~m}^{3}$ to a final volume of $0.3 \mathrm{~m}^{3}$. What is the change in entropy of the gas during this process?
A) $-53 \mathrm{~J} / \mathrm{K}$
B) $+53 \mathrm{~J} / \mathrm{K}$
C) $-11 \mathrm{~J} / \mathrm{K}$
D) $+11 \mathrm{~J} / \mathrm{K}$
E) $-35 \mathrm{~J} / \mathrm{K}$

Ans:

$$
\begin{aligned}
\Delta S & =n C_{p} \ln \left(\frac{T_{f}}{T_{i}}\right)=n c_{p} \ln \left(\frac{V_{f}}{V_{i}}\right) \\
& =5 \times \frac{5}{2} \times 8.314 \times \ln \left(\frac{0.3}{0.5}\right)=-53.09 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

Q20.

A Carnot refrigerator operates on 800 W of power. If the freezing compartment of the refrigerator is at $-15.0^{\circ} \mathrm{C}$ and the outside air is at $35.0^{\circ} \mathrm{C}$, calculate the rate at which heat is discharged to the outside air.
A) $4.93 \times 10^{3} \mathrm{~J} / \mathrm{s}$
B) $1.29 \times 10^{3} \mathrm{~J} / \mathrm{s}$
C) $7.55 \times 10^{3} \mathrm{~J} / \mathrm{s}$
D) $8.80 \times 10^{3} \mathrm{~J} / \mathrm{s}$
E) $9.34 \times 10^{3} \mathrm{~J} / \mathrm{s}$

Ans:

$$
\begin{aligned}
& Q_{H}=Q_{L}+W \\
& Q_{L}=K W=\frac{T_{L}}{T_{H}-T_{L}} \times W=\frac{258}{308-258} \times 800 \\
& Q_{L}=5.16 \times 800=4128 \mathrm{~J} / \mathrm{s} \\
& Q_{H}=Q_{L}+W=4128+800=4928 \mathrm{~J}
\end{aligned}
$$

