

Q1.

The distance between two successive minima of a transverse wave is 2.76 m. Six crests of the wave pass a given point along the direction of travel every 14.0 s. Find the wave speed?

A) 0.986 m/s B) 0.892 m/s C) 0.267 m/s D) 1.012 m/s E) 0.768 m/s

Ans:

$$
f = \frac{5.00}{14.0 \text{ s}} = 0.357 \text{ Hz} \rightarrow v = \lambda f = (2.76 \text{ m})(0.357 \text{ Hz}) = 0.9857 \text{ m/s}
$$

Q2.

The speed of waves on a thin wire is 150 m/s. The density of the material that the wire is made of is 5000 kg/m³. The wire has a 0.500 mm diameter circular crosssection. What is the tension in the wire?

A) 22.1 N B) 76.2 N C) 88.4 N D) 0.147 N E) 63.7 N

Ans:

 (150) = 5000 × π | (150) 3×2 $\tau = \mu v^2 = \rho A (150)^2 = 5000 \times \pi \left(\frac{0.5 \times 10^{-3}}{2} \right)^2 (150)^2 = 22.09 \text{ N}$ $\rho = \frac{m \text{a} \text{a} \text{s}}{N}$ o lume $= \frac{m}{A}$ (A L)= $\frac{\mu}{A}$ \Rightarrow . $v = \frac{\tau}{\sqrt{2\pi}}$ $=$ m ass/V olume = m/(A L)= μ /A \Rightarrow $\mu = \rho A$ μ i, $=$ v = $\sqrt{\frac{v}{\mu}}$
 $\Rightarrow \tau = \mu v^2 = \rho A (150)^2 = 5000 \times \pi \left(\frac{0.5 \times 10^{-3}}{2}\right)^2 (150)^2 = 22.09 \text{ N}$

Q3.

Two identical waves, with amplitude A, travel simultaneously through the same medium and in the same direction with phase difference ϕ . If the amplitude of the resulting superposition is A/2, what is the possible value of ϕ ?

Ans:

$$
y'_{m} = 2 y_{m} \cos \frac{\phi}{2} \rightarrow \frac{A}{2} = 2 A \cos \frac{\phi}{2} \rightarrow \phi = 2 \cos^{-1} \frac{1}{4} = 2.636 \text{ rad} = 151^{\circ}
$$

Q4.

Figure 1 shows two loudspeakers, (1) and (2), above each other. They are driven by the same source at frequency of 450 Hz. An observer is sitting at point O , at the same distance from each speaker. What minimum upward vertical distance speaker (1) should be moved to in order to create destructive interference at point *O*? [Note: speed of the sound in air is 343 m/s]

Ans:

$$
\lambda = \frac{v}{f} = \frac{343 \text{ m/s}}{450 \text{ Hz}} = 0.762 \text{ m}
$$

$$
r_1 = r_2 = \sqrt{1.50^2 + 8.00^2} = 8.14 \text{ m}
$$

To create destructive interference at point O,

To create destructive interference at point O,
\n
$$
r_1 - r_2 = \frac{\lambda}{2} = 0.381 \text{ m} \rightarrow r_1 = r_2 + 0.381 = 8.52 \text{ m}
$$

\n $r_1 = \sqrt{(1.50 + y)^2 + 8.00^2} = 8.52 \rightarrow y = \sqrt{8.59} - 1.50 = 1.43 \text{ m}$

Q5.

At a distance of 2.0 m from a point source of sound, the sound level is 80 dB. What will be the sound level at a distance of 4.0 m from this source? (Assume that the point source radiates uniformly in all directions)

A) 74 dB B) 83 dB C) 62 dB D) 16 dB E) 12 dB

Ans:

$$
\beta = 10 \log \left(\frac{I}{I_0} \right) \rightarrow \beta_2 - \beta_1 = 10 \log \left(\frac{I_2}{I_1} \right) = 10 \log \left(\frac{r_1^2}{r_2^2} \right) = 20 \log \left(\frac{r_1}{r_2} \right)
$$

$$
\beta_2 = \beta_1 + 20 \log \left(\frac{r_1}{r_2} \right) = 80 + 20 \log \left(\frac{2m}{4m} \right) = 74 \text{ dB}
$$

Q6.

A fixed alarm is emitting sound waves of frequency 520 Hz. You are on a motorcycle, traveling directly away from the alarm. How fast you must be traveling if you detect a frequency of 490 Hz? [Note: Speed of the sound in air = 343 m/s]

A) 19.8 m/s B) 22.2 m/s C) 27.1 m/s D) 11.9 m/s E) 16.3 m/s

$$
f' = f\left(\frac{v - v_d}{v}\right) \rightarrow v_d = v(1 - \frac{f'}{f}) = 343(1 - \frac{490}{520}) = 19.8 \text{ m/s}
$$

Q7.

A 0.90 m long pipe is open at one end but closed at the other end. If it currently resonates with a harmonic of wavelength 0.72 m, what is the wavelength of the next higher harmonic in this pipe?

Q8.

A point source, of sound waves, radiates uniformly in all directions. At a distance of 20 m from the source the sound level is 51 dB. What is the total power output of the source?

A) 6.3×10^{-4} Watt B) 9.6×10^{-4} Watt C) 1.1×10^{-4} Watt D) 9.8×10^{-5} Watt E) 4.2×10^{-5} Watt

$$
P = 4\pi r^2 I = 4\pi r^2 \times I_0 \times 10^{\frac{\beta}{10}} = 4\pi \times 20^2 \times 10^{-12} \times 10^{\frac{51}{10}} = 6.3 \times 10^{-4}
$$
 W att

Q9.

The coefficient of linear expansion of iron is 10^{-5} °C⁻¹. The volume of an iron cube, having an edge of 5.00 cm, will increase if it is heated from 10.0 °C to 60.0 °C by

A) 0.188 cm^3 B) 0.375 cm^3 C) 0.225 cm^3 D) 0.750 cm^3 E) 0.625 cm^3

Ans:

 $\alpha = 10^{-5}$; L = 5; $\Delta T = 60 - 10$; $v_0 = L^3$; $\Delta v = 3 \alpha v_0 \Delta T = 0.188$ cm³

Q10.

In an insulated container, 250 g of ice at 0 $^{\circ}$ C are added to 500 g of water at 18 $^{\circ}$ C. What is the final temperature of the system?

<mark>A) 0 ^oC</mark> B) 5 $^{\circ}$ C C) 25 $^{\circ}$ C D) $17 °C$ E) $100 °C$

Ans:

 $QL($ lost by ice) = mL = 250 g × 333 J /g = 83250 J QG(gained by water) = M c dT = $500 \text{ g} \times 4.190 (18 - 0)$ J /g = 37710 J ∵ QL > QG , so we still have some ice not melted \Rightarrow T = 0 °C

Q11.

A system of an ideal gas undergoes the cyclic process shown in the **Figure 2**. Calculate the work done by the system along the path XY.

 $A)$ +90 J

Q12.

A bar of gold is in thermal contact with a bar of silver having the same length and area, see Figure 3. One end of the connected bars is maintained at 80.0 °C and the opposite end is at 30.0 \degree C. When the energy transfer reaches steady state, what is the temperature at the junction? [The thermal conductivity for gold = $314 \frac{W}{m \cdot ^\circ \text{C}}$ and the thermal conductivity for silver = $427 \frac{W}{m^{\circ} \text{C}}$]

$$
k_g \frac{\Delta T_g \cancel{A}}{\cancel{L}} = k_s \frac{\Delta T_s \cancel{A}}{\cancel{L}}
$$

\n
$$
k_g (80 - T_j) = k_s (T_j - 30)
$$

\n
$$
k_g (80) = k_s (30) = T_j (k_s + k_g)
$$

\n
$$
T_j = \frac{k_g (80) + k_s (30)}{k_s + k_g} = 51.2 \text{°C}
$$

Q13.

Two moles of an ideal gas are in a 6.0×10^{-3} m³ container at a pressure of 5.0×10^{5} Pa. Find the average translational kinetic energy of a single molecule.

A)
$$
3.7 \times 10^{-21}
$$
 J
\nB) 7.5×10^{-21} J
\nC) 9.4×10^{-21} J
\nD) 0.22×10^{-21} J
\nE) 5.7×10^{-21} J

Ans:

$$
K_{avg} = \frac{3}{2}kT
$$

PV = nRT

$$
T = \frac{6 \times 10^5 \times 5 \times 10^{-3}}{2 \times 8.31}
$$

$$
K_{avg} = \frac{3}{2} \times 1.38 \times 10^{-23} \times T = 3.7 \times 10^{-21} \text{ J}
$$

Q14.

Which one of the graphs in **Figure 4** best represents the variation of pressure with volume for an isothermal process of an ideal gas?

One mole of an ideal monatomic gas is initially at 300 K and 1.0 atm. The gas is compressed adiabatically to 2.0 atm. What is the final volume of the gas?

A) 0.016 m^3

B) 0.037 m³ C) 0.056 m^3 D) 0.025 m^3 E) 0.012 m^3

Ans:

 PV^{γ} = constant

$$
P_{i} \left(\frac{nRT_{i}}{P_{i}}\right)^{\gamma} = P_{f}V_{f}^{\gamma}
$$

$$
V_{f} = \frac{1}{2^{1/\gamma}} \left(\frac{1 \times 8.31 \times 300}{1.01 \times 10^{5}}\right)
$$

$$
V_{f} = 0.016m^{3}
$$

Q16.

Find the change in entropy of a 100 g of ice at 0° C that is isobarically heated slowly to reach 80 °C water. [The heat of fusion for ice $L_F = 80$ cal/g and the specific heat of water $c_w = 1.0$ cal/g.K].

A) 55 cal/K B) 12 cal/K C) 62 cal/K D) 35 cal/K E) 85 cal/K

$$
\Delta S = \frac{mL}{T} + mcln \frac{T_f}{T_i}
$$

= $\frac{100 \times 80}{273} + 100 \times 1 \ln \frac{273 + 80}{273} = 55 \text{ cal/k}$

A sample of an ideal monatomic gas undergoes the reversible process from A to B as displayed in the T-S diagram shown in **Figure 5**. The process is:

Ans:

A

Q18.

Five moles of an ideal monatomic gas are allowed to expand isobarically. The initial volume is 20.0 cm^3 and the final volume is 100 cm^3 . Find the change in entropy of the gas.

$$
\Delta S = nR \ln \frac{V_f}{V_i} + nC_v \ln \frac{T_f}{T_i}
$$

\n
$$
pV = nRT \Rightarrow \frac{V_f}{V_i} = \frac{T_f}{T_i}
$$

\n
$$
\Delta S = nR \ln \frac{V_f}{V_i} + nC_v \ln \frac{V_f}{V_i}
$$

\n
$$
= n(R + C_v) \ln \frac{V_f}{V_i} = 5(\frac{5}{2}) (8.31) \ln \frac{100}{20} = 167 \text{ J/K}
$$

A Carnot heat engine absorbs 70.0 kJ as heat and expels 55.0 kJ as heat in each cycle. If the low-temperature reservoir is at 120 $^{\circ}$ C, find the temperature of the hightemperature reservoir.

Ans:

$$
\frac{|Q_C|}{|Q_H|} = \frac{T_C}{T_H}
$$

\n
$$
\frac{55}{70} = \frac{273 + 120}{273 + t_h}
$$

\n
$$
t_h = \frac{70}{55} (273 + 120) - 273 = 227 \,^{\circ}\text{C}
$$

Q20.

Is it possible to transfer energy as heat from a low-temperature reservoir to a hightemperature reservoir? Choose the right answer with the right explanation.

- A) Yes, this is what a refrigerator does, but work must be done on the refrigerator to make this happen.
- B) No, this violates the second law of thermodynamics, if no work is being involved.
- C) No, this violates the zero's law of thermodynamics.
- D) Yes, this is what a heat engine does, and it can happen without the engine doing work.
- E) Yes, this is what a refrigerator does, and it can happen without doing work on the refrigerator.

Ans:

A.