Q1.
A string has a mass of 0.20 g and a length of 1.6 m . A sinusoidal wave is travelling on this string, and is given by: $y(x, t)=0.030 \sin (0.30 x-80 t+3 \pi / 2)$ (SI units). What is the magnitude of the tension in the string?
A) 8.9 N
B) 3.3 N
C) 4.7 N
D) 9.2 N
E) 5.4 N

Ans:
$\mu=\frac{\mathrm{m}}{\mathrm{L}}=\frac{2.0 \times 10^{-4}}{1.6}=1.25 \times 10^{-4} \mathrm{~kg} / \mathrm{m}$
$\mathrm{v}=\frac{\omega}{\mathrm{k}}=\frac{80}{0.30}=266.7 \mathrm{~m} / \mathrm{s}$
$v=\sqrt{\frac{\tau}{\mu}} \rightarrow \tau=\mu \cdot v^{2}=8.9 \mathrm{~N}$

Q2.
The average power transmitted by a sinusoidal wave on a stretched string does not depend on
A) the length of the string.
B) the frequency of the wave.
C) the wavelength of the wave.
D) the tension in the string.
E) the amplitude of the wave.

Ans:
$\mathrm{P}_{\mathrm{av}}=\frac{1}{2} \mu \mathrm{v} \omega^{2} \mathrm{y}_{\mathrm{m}}{ }^{2}$
Q3.
A standing wave is established on a 3.0 m long string fixed at both ends. The string vibrates in three loops with an amplitude of 1.0 cm . If the wave speed is $100 \mathrm{~m} / \mathrm{s}$, what is the frequency?
A) 50 Hz
B) 100 Hz
C) 33 Hz
D) 25 Hz
E) 10 Hz

Ans:

$$
\begin{aligned}
& \lambda_{n}=\frac{2 \mathrm{~L}}{\mathrm{n}} \Rightarrow \lambda_{3}=\frac{2 \mathrm{~L}}{3}=\frac{2 \times 3.0}{3}=2.0 \mathrm{~m} \\
& \mathrm{v}=\lambda \mathrm{f} \Rightarrow \mathrm{f}=\frac{\mathrm{v}}{\lambda}=\frac{100}{2.0}=50 \mathrm{~Hz}
\end{aligned}
$$

Q4.

A string of length 2.5 m is fixed at both ends. A standing wave of frequency 100 Hz is set up on the string. The distance between two adjacent nodes is 0.50 m . What is the fundamental frequency of the string?
A) 20 Hz
B) 100 Hz
C) 40 Hz
D) 500 Hz
E) 60 Hz

Ans:
$\frac{\lambda}{2}=0.50 \mathrm{~m} \Rightarrow \lambda=1.0 \mathrm{~m}$
$\lambda_{\mathrm{n}}=\frac{2 \mathrm{~L}}{\mathrm{n}} \Rightarrow \mathrm{n}=\frac{2 \mathrm{~L}}{\lambda}=\frac{2 \times 2.5}{1.0}=5$
$\mathrm{f}_{\mathrm{n}}=\mathrm{n} . \mathrm{f}_{1} \Rightarrow \mathrm{f}_{1}=\frac{\mathrm{f}}{\mathrm{n}}=\frac{100}{5}=20 \mathrm{~Hz}$

Q5.
Two speakers, facing each other and separated by a distance of 5.00 m , are driven by the same oscillator, as shown in Figure 1. A listener starts walking from the left speaker toward the right one, along the line joining them. He hears the fist minimum at $x=1.00 \mathrm{~m}$. Find the frequency of the oscillator. Speed of sound $=343 \mathrm{~m} / \mathrm{s}$.
A) 57.2 Hz

Fig \# 1
B) 114 Hz
C) 42.9 Hz
D) 85.8 Hz
E) 34.3 Hz

Ans:
$\Delta \mathrm{L}=\mathrm{L}_{2}-\mathrm{L}_{1}=4-1=3 \mathrm{~m}$
But: $\Delta \mathrm{L}=\frac{\lambda}{2} \leftarrow$ First minimum
$\Rightarrow \lambda=2 . \Delta \mathrm{L}=6.0 \mathrm{~m}$
$\mathrm{v}=\lambda \mathrm{f}$
$\Rightarrow \mathrm{f}=\frac{\mathrm{v}}{\lambda}=\frac{343}{6.0}=57.2 \mathrm{~Hz}$

Q6.
A point source uniformly emits 440 W of sound in all directions. How far from the source will the sound level be 106 dB ?
A) 29.7 m
B) 21.8 m
C) 32.5 m
D) 38.1 m
E) 52.5 m

Ans:

$$
\begin{aligned}
& \beta=10 \cdot \log \left(\frac{I}{I_{0}}\right) \Rightarrow I=I_{0} \cdot(10)^{\beta / 10}=10^{-12} \times(10)^{10.6} \\
& =10^{-1.4}=0.0398 \mathrm{~W} / \mathrm{m}^{2} \\
& I=\frac{P_{s}}{4 \pi r^{2}} \Rightarrow r=\sqrt{\frac{P_{s}}{4 \pi \mathrm{I}}}=\sqrt{-\frac{440}{4 \pi \times 0.0398}}=29.7 \mathrm{~m}
\end{aligned}
$$

Q7.
A train approaches a mountain at a speed of $20.8 \mathrm{~m} / \mathrm{s}$. The train's engineer sounds a whistle that emits sound with a frequency of 420 Hz . What will be the frequency of the sound reflected from the mountain, as heard by the engineer? Speed of sound = $343 \mathrm{~m} / \mathrm{s}$.
A) 474 Hz
B) 430 Hz
C) 446 Hz
D) 420 Hz
E) 400 Hz

Ans:

$$
\left.\begin{array}{l}
\text { Train } \rightarrow \text { Mountain: } \mathrm{f}^{\prime}=\mathrm{f}_{0} \frac{\mathrm{v}}{\mathrm{v}-\mathrm{w}} \\
\text { Mountain } \rightarrow \text { Train: } \mathrm{f}^{\prime \prime}=\mathrm{f}^{\prime} \frac{\mathrm{v}+\mathrm{w}}{\mathrm{v}}
\end{array}\right\} \mathrm{w}=\text { speed of train } \quad \begin{aligned}
& \Rightarrow \mathrm{f}^{\prime \prime}=\mathrm{f}_{0} \cdot \frac{\mathrm{v}+\mathrm{w}}{\mathrm{v}-\mathrm{w}}=420 \times \frac{343+20.8}{343-20.8}=474 \mathrm{~Hz}
\end{aligned}
$$

Q8.

Tube A has length L_{A} and is open at both ends. Tube B has length L_{B} and is closed at one end. If the fundamental frequencies of the two tubes match then:
A) $L_{B}=L_{A} / 2$
B) $L_{B}=L_{A}$
C) $L_{B}=L_{A} / 4$
D) $L_{B}=2 L_{A}$
E) $L_{B}=4 L_{A}$

Ans:

$$
\left.\begin{array}{l}
f_{n A}=\frac{n v}{2 L_{A}} \Rightarrow f_{1 A}=\frac{v}{2 L_{A}} \\
f_{n B}=\frac{n v}{4 L_{B}} \Rightarrow f_{1 B}=\frac{v}{4 L_{B}}
\end{array}\right\} \begin{aligned}
& f_{1 A}=f_{1 B}: \\
& \frac{v}{2 L_{A}}=\frac{v}{4 L_{B}} \\
& \Rightarrow L_{B}=L_{A} / 2
\end{aligned}
$$

Q9.
A bridge is made of segments of concrete, each of length $L=50 \mathrm{~m}$, that are placed end to end. Every two adjacent segments are separated by a spacing ΔL to allow for thermal expansion, without the two segments touching. If the temperature changes by $150 \mathrm{~F}^{\mathrm{o}}$, what should be the minimum value of ΔL ? The coefficient of linear expansion of concrete is $12 \times 10^{-6}\left({ }^{\circ} \mathrm{C}\right)^{-1}$.
A) 5.0 cm
B) 7.5 cm
C) 10 cm
D) 2.5 cm
E) 9.5 cm

Ans:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{F}} & =\frac{9}{5} \mathrm{~T}_{\mathrm{C}}+32 \Rightarrow \Delta \mathrm{~T}_{\mathrm{F}}=\frac{9}{5} \Delta \mathrm{~T}_{\mathrm{C}} \Rightarrow \Delta \mathrm{~T}_{\mathrm{C}}=\frac{5}{9} \Delta \mathrm{~T}_{\mathrm{F}} \\
\Delta \mathrm{~L} & =\alpha . \mathrm{L}_{0} \cdot \Delta \mathrm{~T}=12 \times 10^{-6} \times 50 \times \frac{5}{9} \times 150 \\
& =0.05 \mathrm{~m}=5.0 \mathrm{~cm}
\end{aligned}
$$

Q10.
A 4.0 kg block of ice at $0.0^{\circ} \mathrm{C}$ is mixed with 4.0 kg of steam at $100^{\circ} \mathrm{C}$. What is the final equilibrium temperature of the system?
A) $100^{\circ} \mathrm{C}$
B) $0.0{ }^{\circ} \mathrm{C}$
C) $50{ }^{\circ} \mathrm{C}$
D) $85{ }^{\circ} \mathrm{C}$
E) $22{ }^{\circ} \mathrm{C}$

Ans:
$\mathrm{Q}_{\mathrm{i} 1}=\mathrm{m}_{\mathrm{i}} \cdot \mathrm{L}_{\mathrm{F}}=4 \times 333=1332 \mathrm{~kJ}$
$\mathrm{Q}_{\mathrm{i} 2}=\mathrm{m}_{\mathrm{i}} \cdot \mathrm{C}_{\mathrm{w}} \cdot \Delta \mathrm{T}=4 \times 4190 \times 100=1676 \mathrm{~kJ}$
\therefore Ice needs $\mathrm{Q}_{\mathrm{i} 1}+\mathrm{Q}_{\mathrm{i} 2}=3008 \mathrm{~kJ}$ to melt and reach $100^{\circ} \mathrm{C}$
$\mathrm{Q}_{\mathrm{s}}=\mathrm{m}_{\mathrm{s}} \cdot \mathrm{L}_{\mathrm{v}}=4 \times 2256=9024 \mathrm{~kJ}$
\therefore Steam has enough heat to melt an heat ice $\therefore \mathrm{T}_{\mathrm{f}}=100^{\circ} \mathrm{C}$

Q11.

Two rods, made of different materials but having the same length and diameter, are welded end to end between two thermal reservoirs, as shown in Figure 3. In steady state, what is the temperature (T_{x}) at the junction between the two rods?
A) $100 k_{1} /\left(k_{1}+k_{2}\right)$
B) $100 k_{2} /\left(k_{1}+k_{2}\right)$
C) $100 k_{1} k_{2} /\left(k_{1}+k_{2}\right)$
D) $50 k_{1} /\left(k_{1}+k_{2}\right)$
E) $50 k_{2} /\left(k_{1}+k_{2}\right)$

Ans:
$P_{1}=\frac{\mathrm{k}_{1} \cdot \mathrm{~A} \cdot\left(100-\mathrm{T}_{\mathrm{x}}\right)}{\mathrm{L}}$
$P_{2}=\frac{\mathrm{k}_{2} \cdot \mathrm{~A} \cdot\left(\mathrm{~T}_{\mathrm{x}}-0\right)}{\mathrm{L}}$
Steady state: $P_{1}=P_{2}$
$\Rightarrow \mathrm{k}_{1}\left(100-\mathrm{T}_{\mathrm{x}}\right)=\mathrm{k}_{2} \mathrm{~T}_{\mathrm{x}}$
$100 \mathrm{k}_{1}-\mathrm{k}_{1} \mathrm{~T}_{\mathrm{x}}=\mathrm{k}_{2} \mathrm{~T}_{\mathrm{x}} \Rightarrow \mathrm{T}_{\mathrm{x}}=100 \cdot \frac{\mathrm{k}_{1}}{\mathrm{k}_{1}+\mathrm{k}_{2}}$

Q12.

An ideal gas undergoes the cyclic process shown in Figure 2. What are the signs of the heats $\mathrm{Q}_{\mathrm{AB}}, \mathrm{Q}_{\mathrm{BC}}, \mathrm{Q}_{\mathrm{CA}}$, respectively?
A) positive, negative, negative
B) positive, negative, positive
C) positive, positive, negative
D) negative, positive, positive
E) negative, positive, negative

Ans:

$\Delta E_{\text {int }}=Q-W$
$\Delta \mathrm{E}_{\text {int }}=\mathrm{n} . \mathrm{C}_{\mathrm{v}} \cdot \Delta \mathrm{T}$

	$\Delta \mathrm{E}$	W	Q
AB	+	+	+
BC	-	0	-
CA	-	-	-

Q13.
Two moles of a monatomic ideal gas are initially at $27.0^{\circ} \mathrm{C}$ and occupy a volume of 20.0 L . The gas is expanded at constant pressure until the volume is doubled. Find the change in the internal energy of the gas.
A) 7.48 kJ
B) 12.5 kJ
C) 0.673 kJ
D) 1.12 kJ
E) 5.44 kJ

Ans:

$$
\begin{aligned}
& \Delta \mathrm{E}_{\text {int }}=\mathrm{n} \cdot \mathrm{c}_{\mathrm{V}} \cdot \Delta \mathrm{~T}=\mathrm{n} \cdot\left(\frac{3}{2} \mathrm{R}\right) \Delta \mathrm{T}=\frac{3}{2} \mathrm{nR} \Delta \mathrm{~T} \\
& \mathrm{pV}=\mathrm{nRT} \Rightarrow \mathrm{nR} \Delta \mathrm{~T}=\mathrm{P} \cdot \Delta \mathrm{~V}=\mathrm{P}_{\mathrm{i}} \cdot\left(2 \mathrm{~V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{i}}\right)=\mathrm{P}_{\mathrm{i}} V_{\mathrm{i}}=\mathrm{nRT}_{\mathrm{i}} \\
& \quad \Rightarrow \Delta \mathrm{E}_{\text {int }}=\frac{3}{2} n R T_{\mathrm{i}}=\frac{3}{2} \times 2 \times 8.31 \times(27+273)=7479 \mathrm{~J}=7.48 \mathrm{~kJ}
\end{aligned}
$$

Q14.

An ideal diatomic gas, initially at $20.0^{\circ} \mathrm{C}$, is compressed adiabatically from 1.00 L to 0.500 L . What is the final temperature of the gas?
A) 387 K
B) 299 K
C) 465 K
D) 305 K
E) 117 K

Ans:

Diatomic: $\gamma=\frac{C_{p}}{C_{v}}=\frac{7 R / 2}{5 R / 2}=\frac{7}{5}=1.4$
Adiabatic: $\mathrm{T}_{\mathrm{i}} \cdot \mathrm{V}_{\mathrm{i}}{ }^{\gamma-1}=\mathrm{T}_{\mathrm{f}} . \mathrm{V}_{\mathrm{f}}^{\gamma-1}$
$\Rightarrow \mathrm{T}_{\mathrm{f}}=\left(\frac{\mathrm{V}_{\mathrm{i}}}{\mathrm{V}_{\mathrm{f}}}\right)^{\gamma-1} \cdot \mathrm{~T}_{\mathrm{i}}=\left(\frac{1.00}{0.500}\right)^{0.4} \times 293.15=387 \mathrm{~K}$

Q15.

The speeds of four particles are as follows: $v_{1}=1.0 \mathrm{~m} / \mathrm{s}, v_{2}=2.0 \mathrm{~m} / \mathrm{s}, v_{3}=3.0 \mathrm{~m} / \mathrm{s}$ and $v_{4}=4.0 \mathrm{~m} / \mathrm{s}$. What is their root mean square speed?
A) $2.7 \mathrm{~m} / \mathrm{s}$
B) $2.5 \mathrm{~m} / \mathrm{s}$
C) $1.9 \mathrm{~m} / \mathrm{s}$
D) $5.5 \mathrm{~m} / \mathrm{s}$
E) $3.2 \mathrm{~m} / \mathrm{s}$

Ans:

$$
\begin{aligned}
& \left(\mathrm{v}^{2}\right)_{\mathrm{avg}}=\frac{1.0+4.0+9.0+16}{4}=7.5(\mathrm{~m} / \mathrm{s})^{2} \\
& v_{\mathrm{rms}}=\sqrt{\left(\mathrm{v}^{2}\right)_{\mathrm{avg}}}=\sqrt{7.5}=2.7 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Q16.

Figure 4 shows a cycle consisting of five paths: $A B$ is isothermal at $300 \mathrm{~K}, B C$ is adiabatic with work $=8.0 \mathrm{~J}, C D$ is isobaric at $5.0 \mathrm{~atm}, D E$ is isothermal, and $E A$ is adiabatic with a change of internal energy of 10 J . What is the change in the internal energy of the gas along path $C D$?
A) -2.0 J
B) +2.0 J
C) -12 J
D) +12 J
E) -18 J

Ans:

For a cycle: $\Delta \mathrm{E}_{\text {int }}=0$
$\Delta \mathrm{E}_{\mathrm{AB}}+\Delta \mathrm{E}_{\mathrm{BC}}+\Delta \mathrm{E}_{\mathrm{CD}}+\Delta \mathrm{E}_{\mathrm{DE}}+\Delta \mathrm{E}_{\mathrm{EA}}=0$
$\Delta \mathrm{E}_{\mathrm{AB}}=\Delta \mathrm{E}_{\mathrm{DE}}=0$ (isothermal)
$\Rightarrow \Delta \mathrm{E}_{\mathrm{CD}}=-\Delta \mathrm{E}_{\mathrm{BC}}-\Delta \mathrm{E}_{\mathrm{EA}}$
$=W_{B C}-\Delta E_{E A}$
$=8.0-10=-2.0 \mathrm{~J}$

Q17.

A real heat engine is represented by the diagram shown in Figure 5. The heat expelled to the low-temperature reservoir can be

Figure \# 5
A) 60 J
B) 40 J
C) 20 J
D) 10 J
E) zero

Ans:

Carnot:

$$
\begin{aligned}
& \mathrm{W}=\varepsilon_{\mathrm{c}} \cdot \mathrm{Q}_{\mathrm{H}}=0.5 \times 100=50 \mathrm{~J} \\
& \mathrm{~W}=\varepsilon_{\mathrm{c}} \cdot \mathrm{Q}_{\mathrm{H}}=0.5 \times 100=50 \mathrm{~J} \\
& \mathrm{Q}_{\mathrm{L}}=\mathrm{Q}_{\mathrm{H}}-\mathrm{W}=100-50 \mathrm{~J}=50 \mathrm{~J}
\end{aligned}
$$

A real heat engine will have less efficiency
\therefore Less work and more Q_{L}
$\therefore \mathrm{Q}_{\mathrm{L}}>50 \mathrm{~J}$

Q18.

Point \boldsymbol{i} in Figure 6 represents the initial state of an ideal gas at temperature T. Rank the entropy changes that the gas undergoes as it moves reversibly from point i to points a, b, c, and d, greatest first.

Figure \# 6
A) b, a, c, d
B) a, b, c, d
C) b, d, a, c
D) (b and d tie), (a and c tie)
E) (b and d tie), a, c

Ans:

$$
\Delta \mathrm{S}=\int \frac{\mathrm{dQ}}{\mathrm{~T}}=\int \frac{\mathrm{nC} \cdot \mathrm{dT}}{\mathrm{~T}}
$$

isobaric: $\Delta \mathrm{S}=\mathrm{n} \cdot \mathrm{C}_{\mathrm{p}} \cdot \ln \left(\frac{\mathrm{T}_{\mathrm{f}}}{\mathrm{T}_{\mathrm{i}}}\right)$
isochoric: $\Delta \mathrm{S}=\mathrm{n} . \mathrm{C}_{\mathrm{v}} \cdot \ln \left(\frac{\mathrm{T}_{\mathrm{f}}}{\mathrm{T}_{\mathrm{i}}}\right)$

Q19.
In an experiment, 200 g of aluminum at $100^{\circ} \mathrm{C}$ is mixed with 200 g of water at $20^{\circ} \mathrm{C}$.
The final equilibrium temperature is $34^{\circ} \mathrm{C}$. What is the change in entropy of the aluminum-water system? The specific heat of aluminum is $900 \mathrm{~J} / \mathrm{kg} . \mathrm{K}$.
A) $+4.1 \mathrm{~J} / \mathrm{K}$
B) $+74 \mathrm{~J} / \mathrm{K}$
C) $-74 \mathrm{~J} / \mathrm{K}$
D) $-4.1 \mathrm{~J} / \mathrm{K}$
E) zero

Ans:

$$
\begin{aligned}
& \Delta \mathrm{S}_{\mathrm{Al}}=0.2 \times 900 \times \ln \left(\frac{34+273}{100+273}\right)=-35.051 \frac{\mathrm{~J}}{\mathrm{~K}} \\
& \Delta \mathrm{~S}_{\mathrm{w}}=0.2 \times 4190 \times \ln \left(\frac{34+273}{20+273}\right)=+39.114 \frac{\mathrm{~J}}{\mathrm{~K}} \\
& \Delta \mathrm{~S}_{\text {system }}=\Delta \mathrm{S}_{\mathrm{Al}}+\Delta \mathrm{S}_{\mathrm{w}}=+4.063 \rightarrow+4.1 \frac{\mathrm{~J}}{\mathrm{~K}}
\end{aligned}
$$

Q20.

A Carnot refrigerator operates between two reservoirs at $-3.0^{\circ} \mathrm{C}$ and $27{ }^{\circ} \mathrm{C}$. How long should the refrigerator be operated, with a 500 W power input, in order for it to absorb 4500 J of heat from the cold reservoir?
A) 1.0 s
B) 5.0 s
C) 2.7 s
D) 6.3 s
E) 1.6 s

Ans:

$$
\begin{aligned}
& \mathrm{K}=\frac{\mathrm{T}_{\mathrm{L}}}{\mathrm{~T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{L}}}=\frac{270}{30}=9 \\
& \mathrm{~K}=\frac{\mathrm{Q}_{\mathrm{L}}}{\mathrm{~W}} \rightarrow \mathrm{~W}=\frac{\mathrm{Q}_{\mathrm{L}}}{\mathrm{~K}}=\frac{4500}{9}=500 \mathrm{~J} \\
& \mathrm{~W}=\text { P.t } \rightarrow \mathrm{t}=\frac{\mathrm{W}}{\mathrm{P}}=\frac{500}{500}=1.0 \mathrm{~s}
\end{aligned}
$$

