Q1.

A stretched string has a length of 2.00 m and a mass of 3.40 g . A transverse sinusoidal wave is travelling on this string, and is given by $y(x, t)=0.030 \sin (0.75 x-126 t)$, where x and y are in meters, and t is in seconds. What is the magnitude of the tension in this string?

Ans.

$y=y_{m} \sin (k x-\omega t)$
$y_{m}=0.03 \mathrm{~m}, \quad k=0.75 m^{-1}, \quad \omega=126 \mathrm{~Hz}$
$v=\sqrt{\frac{\tau}{\mu}}$
$\tau=v^{2} \mu----(1)$
$v=\frac{\omega}{k}=\frac{126}{0.75}=186 \frac{\mathrm{~m}}{\mathrm{~s}}$
$\mu=\frac{m}{L}=\frac{3.4 \times 10^{-3}}{2}=1.7 \times 10^{-3} \mathrm{~kg} / \mathrm{m}$
Putting values of v and μ in $\mathrm{Eq}(1)$
$\tau=(186)^{2} \times 1.7 \times 10^{-3}=47.98 N \approx 48 N$
Q2.
The average power of a sinusoidal wave on a stretched string is P. If an identical wave is sent simultaneously along the same string in the same direction but with a phase difference of 90° from the first wave, the new average power is

Ans

$P=\frac{1}{2} \mu v \omega^{2} y_{m}^{2}$
$P^{\prime}=\frac{1}{2} \mu v \omega^{2} y_{m}^{\prime}{ }^{2}---(1)$
$y_{m}^{\prime}=2 y_{m} \cos \left(\frac{\varphi}{2}\right)$
at $\varphi=90^{\circ} \quad y_{m}^{\prime}=\sqrt{2} y_{m}----(2)$
Putting Eq(2) into Eq(1) we get:
$P^{\prime}=\frac{1}{2} \mu v \omega^{2}\left(\sqrt{2} y_{m}\right)^{2}$
$P^{\prime}=2\left(\frac{1}{2} \mu v \omega^{2} y_{m}^{2}\right)$
$P^{\prime}=2 P$

Q3.

For a standing wave on a string fixed at both ends

Ans.

The midpoint is an antinode for odd harmonics.
Q4.
A string that is stretched between fixed supports oscillates in a third-harmonic standing wave pattern. The displacement of the wave is given by $y(x, t)=(0.10) \sin (\pi x / 5) \cos$ (12 πt),
where x and y are in meters, and t is in seconds. What is the length of the string?

Ans

$L=\frac{3 \lambda}{2}$
From given equation we get:
$k=\frac{\pi}{5} \Rightarrow \frac{2 \pi}{\lambda}=\frac{\pi}{5} \Rightarrow \lambda=10 \mathrm{~m}$
$L=\frac{3 \lambda}{2}=\frac{3 \times 10}{2}=15 \mathrm{~m}$

Q5.

A string that is stretched between fixed supports has resonant frequencies of 385 and 430 Hz , with no intermediate resonant frequencies. What is the frequency of the seventh harmonic?
Ans.
$f_{n}=n f_{1}=385 \mathrm{~Hz} \quad$ and $\quad f_{n+1}=(n+1) f_{1}=430 \mathrm{~Hz}$
$f_{n+1}-f_{n}=(n+1) f_{1}-n f_{1}=f_{1}=430-385=45 \mathrm{~Hz}$
The frequency of the seventh harmonic $f_{7}=7 f_{1}=7 \times 45=315 \mathrm{~Hz}$

Q6.

If the intensity of a sound wave traveling in air with constant frequency is doubled, then

Ans.

Velocity of sound is fixed in given medium; doesn't depend on intensity.

Q7.

Two speakers, separated by 2.00 m, face each other as shown in Figure 1. They are driven by the same generator, and emit sound waves with a frequency of 170 Hz , that are initially in phase. A listener is initially at point \mathbf{A}, which is at the midpoint between the two speakers. What is the shortest distance he should move to find a point of destructive interference? [Take the speed of sound to be $340 \mathrm{~m} / \mathrm{s}$]

Fig\#1

Maximum intensity at A.
Next minimum will be $(\lambda / 4)$ distance away from A
$d=\frac{\lambda}{4}=\frac{1}{4} \cdot \frac{v}{f}=\frac{1}{4} \cdot \frac{340}{170}=0.500 \mathrm{~m}$

Q8.
A tube open at both ends has length L_{A}. A tube open only at one end has length L_{B}. If the two tubes have the same fundamental frequency, then

Ans.

Tube B

$L_{B}=\frac{\lambda}{4} \Rightarrow \lambda=4 L_{B}$

$L_{A}=\frac{\lambda}{2} \quad$ same fundamental frequency $=$ same fundamental wave length
$L_{A}=\frac{4 L_{B}}{2}=2 L_{B}$

Q9.

A police car, moving at $20.0 \mathrm{~m} / \mathrm{s}$, emits a sound wave with a frequency of 300 Hz . Find the wavelength of the sound wave in front of the car, as shown in Figure 2.
[Take the speed of sound in air to be $340 \mathrm{~m} / \mathrm{s}$]
Fig\#

Ans.

$\lambda^{\prime}=\frac{v}{f^{\prime}}=\frac{340}{f^{\prime}}$
$f^{\prime}=f \frac{v}{v-v_{s}}=300 \frac{340}{340-20}=319 \mathrm{~Hz}$
$\lambda^{\prime}=\frac{v}{f^{\prime}}=\frac{340}{319}=1.07 \mathrm{~m}$

Q10.

The melting point of sulfur is $444.6^{\circ} \mathrm{C}$ and is $586.1 \mathrm{~F}^{\circ}$ below its boiling point.
Determine the boiling point of sulfur in degrees Celsius.

Ans.

$B P=M P+\Delta C=444.6+\Delta C$
$\frac{\Delta C}{100}=\frac{\Delta F}{180}$
$\Delta C=\frac{100}{180} \Delta F \Rightarrow \Delta C=\frac{5}{9} \Delta F$
$\Delta C=\frac{5}{9} \times 586.1=325.6$
$B P=M P+\Delta C=444.6+325.6=770.2^{\circ} \mathrm{C}$

Q11.

An iron tank is completely filled with $2.80 \mathrm{~m}^{3}$ of water when both the tank and the water are at a temperature of $32.0^{\circ} \mathrm{C}$. When the tank and the water have cooled to $18.0^{\circ} \mathrm{C}$,
what additional volume of water can be put into the tank? $\left[\alpha_{\text {iron }}=12.0 \times 10^{-6} / \mathrm{C}^{\circ}, \beta_{\text {water }}=\right.$ $\left.4.79 \times 10^{-4} / \mathrm{C}^{\circ}\right]$
Ans.

$$
\begin{aligned}
& \Delta V_{I}=V_{o I} V_{B} \Delta T=2.8 \times 3 \times 12 \times 10^{-6}(18-32)=-1.4 \times 10^{-3} \mathrm{~m}^{3} \\
& \Delta V_{\omega}=V_{o I} V_{\omega} \Delta T=2.8 \times 4.79 \times 12 \times 10^{-6}(18-32)=-18.78 \times 10^{-3} \mathrm{~m}^{3} \\
& \Delta V_{o d d}=\Delta V_{I}-\Delta V_{\omega}=-1.4 \times 10^{-3}+18.78 \times 10^{-3}=17.4 \times 10^{-3} \mathrm{~m}^{3}
\end{aligned}
$$

Q12.

A $100-\mathrm{g}$ ice cube at $0.0^{\circ} \mathrm{C}$ is placed in 650 g of water at $18^{\circ} \mathrm{C}$. If the system is isolated, what is the final temperature?

Ans.

$$
\begin{aligned}
& m_{i} L_{f}+m_{i} C_{\omega}(T-0)=m_{\omega} C_{\omega}(18-T) \\
& T=\frac{m_{\omega} C_{\omega}(18)-m_{i} L_{f}}{m_{i} C_{\omega}+m_{\omega} C_{\omega}}=\frac{0.65 \times 4190 \times 18-0.1 \times 333060}{0.65 \times 4190-0.1 \times 4190}=5^{\circ} \mathrm{C}
\end{aligned}
$$

Q13.

A copper rod has a length of 60 cm . One end is maintained at $80^{\circ} \mathrm{C}$ and the other end is at $20^{\circ} \mathrm{C}$. In steady state, what is the temperature of the rod at a point which is 20 cm from the hot end? $\quad\left[k_{\text {copper }}=401 \mathrm{~W} / \mathrm{m} . \mathrm{K}\right]$

Ans.

$$
\begin{aligned}
& \frac{K A(80-T)}{20}=\frac{K A(T-20)}{40} \\
& 160-2 T=T-20 \\
& 3 T=180 \\
& T=60^{\circ} \mathrm{C}
\end{aligned}
$$

Q14.

A 5 moles of an ideal gas expand isobarically from $\mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{f}}=75^{\circ} \mathrm{C}$. Calculate the work done by the gas during this process.

Ans.

$$
W=P \Delta V=n R \Delta T=5 \times 8.31 \times(75-25) \approx 2.1 \times 10^{3} J
$$

Q15.

An ideal gas has a density of $3.75 \mathrm{~kg} / \mathrm{m}^{3}$ and is at a pressure of 1.00 atm . Determine the rms speed of the molecules of this gas.
Ans.

$$
v_{r m s}=\sqrt{\frac{3 R T}{M}}=\sqrt{\frac{3 P V}{M}}=\sqrt{\frac{3 P}{\rho}}=\sqrt{\frac{3 \times 1.01 \times 10^{5}}{3.75}}=28.4 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Q16.

An ideal monatomic gas is taken through cycle $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{A}$, shown in the p - V diagram of Figure 3, where process $B \rightarrow$ C is isothermal. Calculate the net work done in one cycle.

Fig\#3

Ans.

$$
\begin{aligned}
W_{\text {net }} & =W_{A B}+W_{B C}+W_{C A} \\
& =P \Delta V+n R T \ln \frac{V_{C}}{V_{B}}+0 \\
& =P\left(V_{B}-V_{A}\right)+P V \ln \frac{V_{C}}{V_{B}} \\
& =1.01 \times 10^{5}\left(50 \times 10^{-3}-10 \times 10^{-3}\right)+1.01 \times 10^{5} \times 50 \times 10^{-3} \times \ln \left(\frac{10 \times 10^{-3}}{50 \times 10^{-3}}\right) \\
W_{\text {net }} & =-4088 \mathrm{~J}=4088 \mathrm{~J}, \text { on the gas. }
\end{aligned}
$$

Q17.

One mole of an ideal monatomic gas is initially at a pressure of $1.01 \times 10^{5} \mathrm{~Pa}$, a temperature of 300 K , and has a volume of 1.00 L . It is compressed adiabatically to a volume of 0.0667 L . Calculate the magnitude of the work done during this process.
Ans.
$|W|=\Delta E=\frac{3}{2} n R \Delta T=\frac{3}{2} \times 1 \times 8.31\left(T_{f}-T_{i}\right)$
$T_{i} V_{i}^{\gamma-1}=T_{f} V_{f}^{\gamma-1} \Rightarrow T_{f}=T_{i}\left(\frac{V_{i}}{V_{f}}\right)^{\gamma-1}=300\left(\frac{1}{0.0667}\right)^{\frac{5}{3}-1}$
$|W|=\frac{3}{2} \times 1 \times 8.31 \times\left[300\left(\frac{1}{0.0667}\right)^{\frac{5}{3}-1}-300\right] \approx 19 \mathrm{KJ}$

Q18.

A system consists of two large thermal reservoirs in contact with each other, one at a temperature of $300^{\circ} \mathrm{C}$ and the other at a temperature $200^{\circ} \mathrm{C}$. If 600 J of heat is transferred from the $300^{\circ} \mathrm{C}$ reservoir to the $200^{\circ} \mathrm{C}$ reservoir, what is the change in entropy of this system?

Ans.
$\Delta S=S_{2}-S_{1}=\frac{Q}{T_{2}}-\frac{Q}{T_{1}}=\frac{600}{200+273}-\frac{600}{300+273}=0.221 \mathrm{~J} / \mathrm{K}$

Q19.

A Carnot refrigerator is operated between two heat reservoirs at temperatures of 320 K and 270 K . In each cycle, the refrigerator extracts 415 J of heat from the cold reservoir. If the refrigerator completes 165 cycles each minute, what is the power input required to operate it?

Ans.
$P=\frac{W}{t}=\frac{W}{60}$
$K=\frac{Q_{L}}{W} \Rightarrow \frac{T_{L}}{T_{H}-T_{L}}=\frac{Q_{L}}{W}$
$W=\frac{Q_{L}\left(T_{H}-T_{L}\right)}{T_{L}}=\frac{165 \times 415(320-270)}{270}$
$P=\frac{W}{t}=\frac{165 \times 415(320-270)}{270 \times 60}=211 \mathrm{watt}$

Q20.

Which of the processes on an ideal gas shown in Figure 4 results in the minimum change in entropy of the gas in changing the gas from state S to State F ?

Ans.

Fig\#4

Entropy is a state function and only depends on the initial and final positions not in the path.

