Q1.

FIGURE 1 shows three waves that are separately sent along the same unstretchable string that is kept under constant tension along an x -axis. Rank the waves according to their angular frequency, smallest first.

Fig\#

A) 3 , then 1 and 2 tie
B) 1 and 2 tie, then 3
C) 2 , then 1 and 3 tie
D) 2 and 3 tie, then 1
E) 1 and 3 tie, then 2

Q2.
A sinusoidal wave of frequency 500 Hz has a speed of $350 \mathrm{~m} / \mathrm{s}$. How far apart are two points that differ in phase by $\pi / 3$?
A) 117 mm
B) 701 mm
C) 60.0 mm
D) 233 mm
E) 181 mm

Q3.
What phase difference between two identical sinusoidal traveling waves, moving in the same direction along a stretched string, results in the combined wave having an amplitude 1.50 times that of the common amplitude of the two combining waves?
A) 1.45 rad
B) 0
C) 2.57 rad
D) 2.07 rad
E) 1.05 rad

Q4.

A standing wave on a string results from the sum of two transverse traveling waves given by $y_{1}=0.050 \sin (\pi x-4 \pi t)$ and $y_{2}=0.050 \sin (\pi x+4 \pi t)$, where x, y_{1}, and y_{2} are in meters and t is in seconds. What is the maximum transverse speed of a particle on the string located at $x=10 \mathrm{~cm}$?
A) $0.39 \mathrm{~m} / \mathrm{s}$
B) $0.79 \mathrm{~m} / \mathrm{s}$
C) $0.11 \mathrm{~m} / \mathrm{s}$
D) $2.6 \mathrm{~m} / \mathrm{s}$
E) $6.1 \mathrm{~m} / \mathrm{s}$

Q5.

FIGURE 2 shows a stretched string of length L and pipes a, b, and c of different lengths varying from $\mathrm{L} / 2$ to L . The string's tension is adjusted until the speed of waves on the string equals the speed of sound waves in the air. The fundamental mode of oscillation is then set up on the string. In which pipe will the sound produced by the string cause resonance and set up the fundamental mode of oscillation?

Fig\#

A) Pipe c
B) Pipe a
C) Pipe b
D) None of them
E) All of them

Q6.
A sound wave of the form $\mathrm{s}=\mathrm{s}_{\mathrm{m}} \cos (\mathrm{kx}-\omega \mathrm{t}+\phi)$ travels at $343 \mathrm{~m} / \mathrm{s}$ through air in a long horizontal tube. At one instant, air molecule A at $x=2.00 \mathrm{~m}$ is at its maximum positive displacement $\mathrm{s}_{\mathrm{m}}=6.00 \mathrm{~nm}$ and air molecule B at $x=2.07 \mathrm{~m}$ is at a positive displacement of 2.00 nm . All the molecules between A and B are at intermediate displacements. What is the angular frequency of the wave?
A) $6.03 \times 10^{3} \mathrm{rad} / \mathrm{s}$
B) $1.06 \times 10^{3} \mathrm{rad} / \mathrm{s}$
C) $4.32 \times 10^{3} \mathrm{rad} / \mathrm{s}$
D) $7.22 \times 10^{3} \mathrm{rad} / \mathrm{s}$
E) $12.0 \times 10^{3} \mathrm{rad} / \mathrm{s}$

Q7.

Two loud speakers are located 3.35 m apart on an outdoor stage. A listener is 18.3 m from one speaker and 19.5 m from the other speaker. During the sound check, a signal generator drives the two speakers in phase with the same amplitude and frequency. The transmitted frequency is swept through the audible range (20.0 Hz to 20.0 kHz). What is the lowest frequency that gives minimum signal (destructive interference) at the listener's location?
($\mathrm{v}_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}$)
A) 143 Hz
B) 286 Hz
C) 215 Hz
D) 429 Hz
E) 108 Hz

Q8.

A train is moving parallel to a highway with a constant speed of $20.0 \mathrm{~m} / \mathrm{s}$. A car is traveling in the same direction in front of the train with a speed of $40.0 \mathrm{~m} / \mathrm{s}$. The car horn sounds at a frequency of 510 Hz . What frequency does a train passenger observe for the car horn? ($\mathrm{v}_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}$)
A) 483 Hz
B) 338 Hz
C) 544 Hz
D) 111 Hz
E) 611 Hz

Q9.

If a gas undergoes an isobaric expansion, which one of the following statements is true?
A) Work is done by the gas.
B) The change in the internal energy is zero.
C) Entropy remains constant.
D) The volume of the gas remains the same.
E) The pressure of the gas decreases uniformly.

Q10.
At $20.0^{\circ} \mathrm{C}$, an aluminum ring has an inner diameter of 5.00 cm . To what temperature should the ring be heated to have an inner diameter of $5.05 \mathrm{~cm} ?\left(\alpha_{\mathrm{Al}}=24.0 \times 10^{-6} / \mathrm{K}\right)$
A) $437{ }^{\circ} \mathrm{C}$
B) $577^{\circ} \mathrm{C}$
C) $365{ }^{\circ} \mathrm{C}$
D) $115^{\circ} \mathrm{C}$
E) $945{ }^{\circ} \mathrm{C}$

Phys102	First Major-161	Zero Version
Coordinator: Dr. A. Naqvi	Saturday, October 29, 2016	Page: 4

Q11.
How much water remains unfrozen after 50.2 kJ is transferred as heat from 260 g of water initially at $15.0^{\circ} \mathrm{C}$.
A) 158 g
B) 42.0 g
C) 82.0 g
D) 101 g
E) 251 g

Q12.
Two identical rectangular rods of the same metal are welded end to end. The left end of the welded rod is kept at a temperature of $\mathrm{T}_{1}=0^{\circ} \mathrm{C}$ while the right end of the welded rod is kept at a temperature of $\mathrm{T}_{2}=100^{\circ} \mathrm{C}$, as shown in FIGURE 3a. In steady state 10 J of heat is conducted through the welded rod in 2.0 min . How much time would be required to conduct 10 J of heat through one rod as shown in FIGURE 3b?

Fig\#

(a)

(b)
A) 1.0 min
B) 0.50 min
C) 2.0 min
D) 1.5 min
E) 2.5 min

Q13.
An ideal monatomic gas at initial temperature T_{o} (in kelvins) expands from initial volume V_{o} to final volume $2 \mathrm{~V}_{\text {o }}$ by any of the five processes $\mathrm{AB}, \mathrm{AC}, \mathrm{AD}, \mathrm{AE}$ and AF indicated in the $T-V$ diagram of FIGURE 4. Which of the processes is an isobaric (constant pressure) process?

Fig\#

A) AC
B) AE
C) AF
D) $A D$
E) AB

Q14.
An ideal gas is initially at a pressure of 1.40 atm and has a volume of 3.50 L . It expands isothermally to a final pressure of 0.600 atm . How much heat is transferred during the process?
A) 419 J
B) 124 J
C) 111 J
D) 539 J
E) 271 J

Q15.
0.586 moles of Helium gas is filled in a spherical balloon of diameter 30.0 cm at a pressure of 1.00 atm . What is the rms speed of the helium atoms? $\left[\mathrm{M}_{\mathrm{He}}=4.00 \times 10^{-3} \mathrm{~kg} / \mathrm{mole}\right.$]
A) $1.35 \mathrm{~km} / \mathrm{s}$
B) $1.00 \mathrm{~km} / \mathrm{s}$
C) $2.05 \mathrm{~km} / \mathrm{s}$
D) $2.11 \mathrm{~km} / \mathrm{s}$
E) $5.01 \mathrm{~km} / \mathrm{s}$

Q16.

An ideal diatomic gas undergoes an adiabatic process in which its pressure increases from 1.00 atm to 20.0 atm . What is the ratio of the final volume to the initial volume of the gas $\left(\mathrm{V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{i}}\right)$?
A) 0.118
B) 0.512
C) 0
D) 2.12
E) 4.21

Q17.

For which of the following process in a closed system, the change in entropy is zero:
A) reversible adiabatic process
B) free expansion process
C) irreversible isothermal process
D) irreversible isobaric process
E) irreversible isochoric (isovolumetric) process

Q18.

A freezer holds 1.25 moles of air at $25.0^{\circ} \mathrm{C}$ and 1.00 atm . The air is then cooled to $-18.0^{\circ} \mathrm{C}$. What would be the entropy change of air if the pressure were maintained at 1.00 atm during the cooling? [Assume air behaves like an ideal diatomic gas]
A) $-5.67 \mathrm{~J} / \mathrm{K}$
B) $-3.89 \mathrm{~J} / \mathrm{K}$
C) $+1.69 \mathrm{~J} / \mathrm{K}$
D) $+4.62 \mathrm{~J} / \mathrm{K}$
E) $-8.89 \mathrm{~J} / \mathrm{K}$

Q19.
A Carnot heat engine has an efficiency of 22.0%. It operates between constant-temperature reservoirs differing in temperature by $75.0 \mathrm{C}^{\circ}$. What is the temperature of the lower temperature reservoir?
A) 266 K
B) 348 K
C) 109 K
D) 301 K
E) 125 K

Q20.
A refrigerator converts 7.0 kg of water at $0^{\circ} \mathrm{C}$ into ice at $0^{\circ} \mathrm{C}$ in one hour. What is the coefficient of performance of the refrigerator if its power input is $3.0 \times 10^{2} \mathrm{~W}$?
A) 2.2
B) 1.2
C) 3.5
D) 1.0
E) 4.7

