Q1.
A sinusoidal wave with an amplitude of 1.00 m and a frequency of 100 Hz travels at $200 \mathrm{~m} / \mathrm{s}$ in the positive x-direction. At $t=0 \mathrm{~s}$, the point at $x=1.00 \mathrm{~m}$ has positive maximum displacement. Which of the following equations represent the wave displacement as it travels.
A) $\mathrm{y}(x, t)=(1.00 \mathrm{~m}) \sin [\pi x-(200 \pi) t-\pi / 2]$
B) $\mathrm{y}(x, t)=(1.00 \mathrm{~m}) \sin [\pi x+(200 \pi)) t]$
C) $\mathrm{y}(x, t)=(1.00 \mathrm{~m}) \sin [\pi x-(100 \pi) t-\pi / 2]$
D) $\mathrm{y}(x, t)=(1.00 \mathrm{~m}) \sin [\pi x-(100 \pi) t]$
E) $\mathrm{y}(x, t)=(1.00 \mathrm{~m}) \sin [\pi x+(300 \pi) t+\pi / 2]$

Q2.

A string with linear mass density $2.00 \mathrm{~g} / \mathrm{m}$ is stretched along the x-axis with a tension of 5.00 N . The string is tied at one end to a 100 Hz simple harmonic oscillator that vibrates perpendicular to the string with an amplitude of 2.00 mm . The average power transported by the wave is:
A) 0.079 W
B) 1.34 W
C) 0.834 W
D) 1.78 W
E) 2.45 W

Q3.
If the frequency of the second-longest wavelength for standing waves on a $240-\mathrm{cm}$-long string that is fixed at both ends is 50 Hz , what is the frequency of the third-longest wavelength?
A) 75 Hz
B) 50 Hz
C) 85 Hz
D) 40 Hz
E) 35 Hz

Q4.
FIGURE 1 shows a snapshot graph of a wave traveling to the right along a string at $25 \mathrm{~m} / \mathrm{s}$. At this instant, what are the velocities of points 1,2 , and 3 on the string, respectively?

A) $-11 \mathrm{~m} / \mathrm{s}, 0,+11 \mathrm{~m} / \mathrm{s}$
B) $-11 \mathrm{~m} / \mathrm{s}, 0,-11 \mathrm{~m} / \mathrm{s}$
C) $0,-11 \mathrm{~m} / \mathrm{s}, 0$
D) $0,+11 \mathrm{~m} / \mathrm{s},-11 \mathrm{~m} / \mathrm{s}$
E) $-19 \mathrm{~m} / \mathrm{s}, 0,+19 \mathrm{~m} / \mathrm{s}$

Q5.

Two transmitters, S_{1} and S_{2}, shown in the FIGURE 2, emit identical sound waves at a frequency of 686 Hz . The transmitters are separated by a distance of 2.0 m . Consider a big circle of radius R with its center halfway between these transmitters. How many interference maxima are there on this big circle?

Fig\#

A) 16
B) 12
C) 14
D) 18
E) 10

Q6.

A tube closed at one end resonates in the standing wave pattern shown in the FIGURE 3. If the frequency of the emitted sound is 858 Hz , what is the length of the tube?

Fig\#

A) 0.500 m
B) 0.300 m
C) 1.50 m
D) 1.00 m
E) 2.00 m

Q7.

Two cars are approaching each other at the same speed when one of the drivers sounds the horn of his car, which has a frequency of 500 Hz . The other driver hears the frequency as 520 Hz . What is the speed of the cars?
A) $6.73 \mathrm{~m} / \mathrm{s}$
B) $13.1 \mathrm{~m} / \mathrm{s}$
C) $2.54 \mathrm{~m} / \mathrm{s}$
D) $1.55 \mathrm{~m} / \mathrm{s}$
E) $5.45 \mathrm{~m} / \mathrm{s}$

Q8.
A source emits sound with equal intensity in all directions. If the displacement amplitude is tripled, the sound level increases by:
A) 9.54 dB
B) 8.45 dB
C) 10.5 dB
D) 7.50 dB
E) 6.00 dB

Q9.
An ideal gas expands from the state $A\left(p_{1}, V_{l}\right)$ to the state $B\left(p_{2}, V_{2}\right)$, where $p_{2}=2 p_{1}$ and $V_{2}=$ $2 V_{1}$ via paths $A B$ and $A C B$, as shown in FIGURE 4. Find the path which requires more heat and the heat difference between the two paths, respectively?

Fig\#

A) Path $A C B,+p_{1} V_{1} / 2$
B) Path $A C B,-p_{1} V_{1} / 2$
C) Path $A B,+3 p_{1} V_{l} / 2$
D) Path $A B,-3 p_{1} V_{l} / 2$
E) Path $A C B,+2 p_{l} V_{l}$

Q10.

A glass container whose volume is 1.00 L at $0.00^{\circ} \mathrm{C}$ is completely filled with a liquid at this temperature. When the filled container is warmed to $55.0^{\circ} \mathrm{C}$, a volume of $8.95 \mathrm{~cm}^{3}$ of the liquid overflow. If the coefficient of linear expansion of glass is $5.67 \times 10^{-6} / \mathrm{C}^{\circ}$, then find the coefficient of volume expansion of the liquid.
A) $18.0 \times 10^{-5} / \mathrm{C}^{\circ}$
B) $2.20 \times 10^{-5} / \mathrm{C}^{\circ}$
C) $7.65 \times 10^{-5} / \mathrm{C}^{\circ}$
D) $11.5 \times 10^{-5} / \mathrm{C}^{\circ}$
E) $14.1 \times 10^{-5} / \mathrm{C}^{\circ}$

Q11.
A block of mass 125 g at a temperature of $90.0^{\circ} \mathrm{C}$ is placed in a cup containing 0.326 kg of water at $20.0^{\circ} \mathrm{C}$. The block and the water reach an equilibrium temperature of $22.4^{\circ} \mathrm{C}$.
Neglecting the heat capacity of the cup, find the specific heat of the block.
A) $388 \mathrm{~J} / \mathrm{kg} . \mathrm{C}^{\circ}$
B) $431 \mathrm{~J} / \mathrm{kg} . \mathrm{C}^{\circ}$
C) $453 \mathrm{~J} / \mathrm{kg} . \mathrm{C}^{\circ}$
D) $712 \mathrm{~J} / \mathrm{kg} . \mathrm{C}^{\circ}$
E) $600 \mathrm{~J} / \mathrm{kg} . \mathrm{C}^{\circ}$

Q12.
As shown in FIGURE 5, when a system is taken from state a to state b along the path $a c b, 90$ J of heat flows into the system and 60 J of work is done by the system. How much heat flows into the system along path $a d b$ if the work done by the system is 15 J ?

Fig\#

A) +45 J
B) +60 J
C) +30 J
D) -30 J
E) -45 J

Q13.

One mole of an ideal monatomic gas is taken along the path $a b$ shown as the solid line in FIGURE 6. Find the amount of heat that is transferred into or out of the gas along the path $a b$.

Fig\#

A) -7.49×10^{2} J
B) $+3.00 \times 10^{2}$ J
C) $-2.22 \times 10^{2} \mathrm{~J}$
D) $+5.01 \times 10^{2} \mathrm{~J}$
E) $-6.22 \times 10^{2} \mathrm{~J}$

Q14.
A sample of argon gas (molar mass 40 g) is at four times the absolute temperature of a sample of hydrogen gas (molar mass 2 g). The ratio of the rms speed of the hydrogen molecules to that of the argon is:
A) $\sqrt{5}$
B) 1
C) $1 / 5$
D) 5
E) $1 / \sqrt{5}$

Q15.
Two moles of an ideal monatomic gas go through the cycle abca. For the complete cycle, 800 J of heat flows out of the gas. Process $a b$ is at constant pressure, and process $b c$ is at constant volume. States a and b have temperatures $T_{a}=200 \mathrm{~K}$ and $T_{b}=300 \mathrm{~K}$, respectively. Find the work W for the process $c a$.
A) -2463 J
B) +1985 J
C) +1677 J
D) -2233 J
E) -800.0 J

Q16.

The volume of an ideal gas is halved during an adiabatic compression that increases the pressure by a factor of 2.5 . By what factor does the temperature increase?
A) 1.3
B) 1.9
C) 2.5
D) 1.7
E) 2.2

Q17.

Three Carnot engines operate between the two temperature limits of (a) 400 and 500 K , (b) 500 and 600 K , and (c) 400 and 600 K , respectively. Each engine extracts the same amount of energy per cycle from the high-temperature reservoir. Rank the magnitudes of the work done by the engines per cycle, greatest first.
A) $\mathrm{c}, \mathrm{a}, \mathrm{b}$
B) a, b, c
C) b, c, a
D) $\mathrm{c}, \mathrm{b}, \mathrm{a}$
E) $\mathrm{a}, \mathrm{c}, \mathrm{b}$

Q18.

FIGURE 7 shows a Carnot cycle on a $T-S$ diagram, with a scale set by $S_{s}=0.60 \mathrm{~J} / \mathrm{K}$. For a full cycle, find the net work done by the system.

Fig\#

A) 75 J
B) 22 J
C) 99 J
D) 31 J
E) 55 J

Q19.

Phys102	First Major	Code: 20
Term: 191	Thursday, October 10, 2019	Page: 6

5.0 mol of an ideal monatomic gas undergoes a constant pressure process at a pressure of 2.0 atm from an initial volume of $0.5 \mathrm{~m}^{3}$ to a final volume of $0.3 \mathrm{~m}^{3}$. What is the change in entropy of the gas during this process?
A) $-53 \mathrm{~J} / \mathrm{K}$
B) $+53 \mathrm{~J} / \mathrm{K}$
C) $-11 \mathrm{~J} / \mathrm{K}$
D) $+11 \mathrm{~J} / \mathrm{K}$
E) $-35 \mathrm{~J} / \mathrm{K}$

Q20.
A Carnot refrigerator operates on 800 W of power. If the freezing compartment of the refrigerator is at $-15.0^{\circ} \mathrm{C}$ and the outside air is at $35.0^{\circ} \mathrm{C}$, calculate the rate at which heat is discharged to the outside air.
A) $4.93 \times 10^{3} \mathrm{~J} / \mathrm{s}$
B) $1.29 \times 10^{3} \mathrm{~J} / \mathrm{s}$
C) $7.55 \times 10^{3} \mathrm{~J} / \mathrm{s}$
D) $8.80 \times 10^{3} \mathrm{~J} / \mathrm{s}$
E) $9.34 \times 10^{3} \mathrm{~J} / \mathrm{s}$

