Phys102	First Major-182	Zero Version
Coordinator: A A Naqvi	Thursday, February 14, 2019	Page: 1

Q1.

Figure 1 shows a graph of a wave traveling to the left along a string at a speed of $34 \mathrm{~m} / \mathrm{s}$. At this instant, what is the transverse velocity of points 1,2 , and 3 , respectively, on the string?

Fig\#

A) $+17 \mathrm{~m} / \mathrm{s}, 0 \mathrm{~m} / \mathrm{s},-17 \mathrm{~m} / \mathrm{s}$
B) $-17 \mathrm{~m} / \mathrm{s},+17 \mathrm{~m} / \mathrm{s}, 0 \mathrm{~m} / \mathrm{s}$
C) $+17 \mathrm{~m} / \mathrm{s},-17 \mathrm{~m} / \mathrm{s}, 0 \mathrm{~m} / \mathrm{s}$
D) $-19 \mathrm{~m} / \mathrm{s}, 0 \mathrm{~m} / \mathrm{s},+19 \mathrm{~m} / \mathrm{s}$
E) $+19 \mathrm{~m} / \mathrm{s},-19 \mathrm{~m} / \mathrm{s}, 0 \mathrm{~m} / \mathrm{s}$

Q2.

Two pieces of string, each of length $\mathrm{L}=1.5 \mathrm{~m}$, are joined together end to end, to make a 3.0 m long combined string. The first piece of string has mass per unit length $\mu_{1}=100 \mathrm{~g} / \mathrm{m}$, the second piece has mass per unit length $\mu_{2}=6.0 \mu_{1}$. If the combined string is under tension $\tau=5.0 \mathrm{~N}$, how much time does it take a transverse travelling wave to travel the entire 3.0 m length of the string?
A) 0.73 s
B) 1.1 s
C) 1.7 s
D) 1.9 s
E) 2.8 s

Q3.
Which one of the following transverse waves traveling in the same string transports the maximum power?
A) a wave with velocity 2 v , amplitude $\mathrm{A} / 2$, and frequency 2 f
B) a wave with velocity v , amplitude 2 A , and frequency $\mathrm{f} / 2$
C) a wave with velocity 2 v , amplitude $\mathrm{A} / 2$, and frequency f
D) a wave with velocity 2 v , amplitude A , and frequency $\mathrm{f} / 2$
E) a wave with velocity v , amplitude A , and frequency f

Q4.

A string oscillates in a third -harmonic standing wave pattern. The amplitude at a point

Phys102	First Major-182	Zero Version
Coordinator: A A Naqvi	Thursday, February 14, 2019	Page: 2

30 cm from one end of the string is half the maximum amplitude. How long is the string?
A) 5.4 m
B) 4.2 m
C) 6.0 m
D) 6.4 m
E) 7.2 m

Q5.
Figure 2 shows four isotropic identical in-phase point sound sources S1, S2, S3, and S4 located along x-axis. The sounds from the four sources interfere at point P, located on the x axis Assume that as the sound waves travel to P, the decrease in their amplitude is negligible. If distance $d=\lambda / 4$ which of the following statement is True.

Fig\#

A) Sound from S1 and S3 interfere destructively at P.
B) Sound from S2 and S4 interfere destructively and from S1 and S3 interfere constructively, at P .
C) Sound from S2 and S4 interfere constructively at P .
D) Sound from S1 and S3 interfere constructively and from S2 and S4 interfere constructively at P.
E) None of the given answers

Q6.

Standing waves of sound are set up in a vertical tube of length 1.000 m with both ends open, filled with air. The tube has a fundamental frequency $f_{0 \text {-air. }}$. Then the bottom end of the tube is closed and filled completely with a fluid. The fundamental frequency of the tube filled with the fluid is $f_{0 \text {-fluid. }}$. Find the fundamental frequency ratio $f_{0 \text {-fluid }} / f_{0 \text {-air }}$ (speed of sound in air $=$ $343.0 \mathrm{~m} / \mathrm{s}$ and speed of sound in the fluid is $1482 \mathrm{~m} / \mathrm{s}$).
A) 2.160
B) 1.123
C) 1.505
D) 2.789
E) 3.545

Q7.
A sound meter placed 3 m from a point isotropic sound source measures a sound level of 70 dB . If the power of the sound source is reduced by a factor of 20 , what will be the sound meter reading?
A) 57 dB
B) 11 dB

Phys102	First Major-182	Zero Version
Coordinator: A A Naqvi	Thursday, February 14, 2019	Page: 3

C) 25 dB
D) 32 dB
E) 66 dB

Q8.
A stationary observer is standing between two sound sources A and B. Source A is moving away from the observer, and source B is moving toward the observer. Both sources emit sound of the same frequency. If both sources are moving with a speed $v_{\text {sound }} / 2$, what is the ratio of the frequencies f_{B} / f_{A} detected by the observer?(Assume speed of sound $v_{\text {sound }}=343$ m / s)
A) 3
B) 4
C) 5
D) 6
E) 7

Q9.
An ideal gas system can go from state i to state f through process A or B, as shown in the Figure 3. If W_{A}, W_{B}, Q_{A} and Q_{B} are work done and heat exchanged during processes A and B , respectively, which of the following relations is True?

A) $\mathrm{Q}_{\mathrm{A}}>\mathrm{Q}_{\mathrm{B}}$
B) $Q_{A}=Q_{B}$
C) $\mathrm{Q}_{\mathrm{A}}<\mathrm{QB}_{\mathrm{B}}$
D) $W_{A}=W_{B}$
E) $\mathrm{W}_{\mathrm{B}}>\mathrm{W}_{\mathrm{A}}$

Q10.
The ends of the two brass and steel rods, each 1.00 m long; as shown in the Figure 4, are separated by 5.00 mm at $25.0^{\circ} \mathrm{C}$. Assuming that the outside ends of both rods rest firmly against rigid supports, at what temperature will the inside ends of the rods just touch? $\left(\alpha_{\text {steel }}=13.0 \times 10^{-6} /{ }^{\circ} \mathrm{C} ; \alpha_{\text {Brass }}=19.0 \times 10^{-6} / \mathrm{C}^{\circ}\right)$.

Fig\#

Phys102	First Major-182	Zero Version
Coordinator: A A Naqvi	Thursday, February 14, 2019	Page: 4

A) $181^{\circ} \mathrm{C}$
B) $157^{\circ} \mathrm{C}$
C) $291^{\circ} \mathrm{C}$
D) $399^{\circ} \mathrm{C}$
E) $401{ }^{\circ} \mathrm{C}$

Q11.
A 150 g of water at $30.0^{\circ} \mathrm{C}$ is poured over a 60.0 g cube of ice at a temperature of $-5.00^{\circ} \mathrm{C}$. How many gram of ice has melted when the ice-water mixture has reached thermal equilibrium (specific heat of ice $c_{\text {ice }}=2220 \mathrm{~J} / \mathrm{kg} . \mathrm{K}$; heat of fusion of ice $\mathrm{L}_{\mathrm{F}}=333 \mathrm{~kJ} / \mathrm{kg}$)?
A) 54.6 g
B) 47.5 g
C) 50.0 g
D) 57.0 g
E) 59.0 g

Q12.

A tea pot, with a 8.500 mm thick steel bottom plate, rests on a hot stove. The area of the bottom plate is $0.1500 \mathrm{~m}^{2}$. The water inside the pot is at $100.0^{\circ} \mathrm{C}$, and 0.3900 kg of water is evaporated every 3.000 min . Find the temperature of the bottom plate of the pot, which is in contact with the stove. (Thermal conductivity of steel $k_{\text {steel }}=50.20 \mathrm{~W} / \mathrm{m}$.K; heat of vaporization of water $\mathrm{Lv}=2256 \mathrm{~kJ} / \mathrm{kg}$)
A) $105.5^{\circ} \mathrm{C}$
B) $103.1^{\circ} \mathrm{C}$
C) $111.9^{\circ} \mathrm{C}$
D) $114.0^{\circ} \mathrm{C}$
E) $107.8^{\circ} \mathrm{C}$

Q13.

Which of the following ideal gases has the highest root-mean-square speed?
A) Nitrogen $(\mathrm{M}=28 \mathrm{~g} / \mathrm{mol})$ at a temperature of $30^{\circ} \mathrm{C}$
B) $\operatorname{Argon}(\mathrm{M}=40 \mathrm{~g} / \mathrm{mol})$ at a temperature of $30^{\circ} \mathrm{C}$
C) Nitrogen $(\mathrm{M}=28 \mathrm{~g} / \mathrm{mol})$ at a temperature of $10^{\circ} \mathrm{C}$
D) Oxygen $(\mathrm{M}=32 \mathrm{~g} / \mathrm{mol})$ at a temperature of $30^{\circ} \mathrm{C}$
E) Nitrogen $(\mathrm{M}=28 \mathrm{~g} / \mathrm{mol})$ at a temperature of $15^{\circ} \mathrm{C}$

Q14.
A spherical balloon of volume $4.00 \times 10^{3} \mathrm{~cm}^{3}$ contains ideal gas helium at a pressure

Phys102	First Major-182	Zero Version
Coordinator: A A Naqvi	Thursday, February 14, 2019	Page: 5

of $1.20 \times 10^{5} \mathrm{~Pa}$. How many mol of helium are in the balloon if the average kinetic energy of the helium atoms is $3.60 \times 10^{-22} \mathrm{~J}$?
A) 3.32
B) 1.21
C) 1.55
D) 2.33
E) 4.11

Q15.
In the isothermal process $\boldsymbol{a} \rightarrow \boldsymbol{b}$ shown in Figure 5, the temperature of an ideal gas remains constant at $85.0^{\circ} \mathrm{C}$. Find the magnitude of the work done by the gas during the process $a \rightarrow b$.

Fig\#

A) $2.22 \times 10^{3} \mathrm{~J}$
B) $1.90 \times 10^{3} \mathrm{~J}$
C) $3.43 \times 10^{3} \mathrm{~J}$
D) $4.27 \times 10^{3} \mathrm{~J}$
E) $5.51 \times 10^{3} \mathrm{~J}$

Q16.
A monatomic ideal gas with 0.10 mol follow the processes $1 \rightarrow 2$ and $2 \rightarrow 3$, as shown in
Figure 6. Determine the net heat exchanged during these processes ($1 \rightarrow 2$ and $2 \rightarrow 3$).
Fig\#

Phys102	First Major-182	Zero Version
Coordinator: A A Naqvi	Thursday, February 14, 2019	Page: 6

A) +323 J
B) -323 J
C) +271 J
D) -271 J
E) +110 J

Q17.
An ideal diatomic gas with 0.500 mol at $\mathrm{T}=273 \mathrm{~K}$ temperature and 1.00 atm pressure is compressed adiabatically to a pressure of 20.0 atm . What is the magnitude of the work done on the gas?
A) $3.84 \times 10^{3} \mathrm{~J}$
B) $3.00 \times 10^{3} \mathrm{~J}$
C) $2.85 \times 10^{3} \mathrm{~J}$
D) $2.11 \times 10^{3} \mathrm{~J}$
E) $1.84 \times 10^{3} \mathrm{~J}$

Q18.
Which of the following statement is True about change in entropy per cycle of a Carnot engine $\Delta \mathrm{S}_{\text {carnot }}$, a real engine $\Delta \mathrm{S}_{\text {real }}$, and a perfect engine $\Delta \mathrm{SPerfect}$ (impossible to build) working between the same hot reservoir (with temperature T_{H}) and cold reservoir (with temperature T_{L})?
A) $\Delta \mathrm{S}_{\text {carnot }}=0 ; \Delta \mathrm{S}_{\text {real }}>0 ; \Delta \mathrm{S}_{\text {Perfect }}<0$
B) $\Delta \mathrm{S}_{\text {carnot }}>0 ; \Delta \mathrm{S}_{\text {real }}=0 ; \Delta \mathrm{S}_{\text {Perfect }}<0$
C) $\Delta \mathrm{S}_{\text {carnot }}=0 ; \Delta \mathrm{S}_{\text {real }}>0 ; \Delta \mathrm{S}_{\text {Perfect }}=0$
D) $\Delta \mathrm{S}_{\text {carnot }}=0 ; \Delta \mathrm{S}_{\text {real }}=0 ; \Delta \mathrm{S}_{\text {Perfect }}<0$
E) $\Delta \mathrm{S}_{\text {carnot }}<0 ; \Delta \mathrm{S}_{\text {real }}=0 ; \Delta \mathrm{S}_{\text {Perfect }}<0$

Q19.
The efficiency of a real heat engine operating between a hot reservoir at $500^{\circ} \mathrm{C}$ and a cold reservoir at $0.000^{\circ} \mathrm{C}$, is 60.0% of the efficiency of a Carnot engine operating between the

Phys102	First Major-182	Zero Version
Coordinator: A A Naqvi	Thursday, February 14, 2019	Page: 7

same hot and cold reservoirs. If the real heat engine and the Carnot engine do the same amount of work, what is the ratio $Q_{\mathrm{H} \text {-real }} / Q_{\mathrm{H} \text {-Carnot }}$?
A) 1.67
B) 1.44
C) 1.87
D) 1.91
E) 1.99

Q20.
The coefficient of performance of a refrigerator is 5.0. The compressor uses 10 J of energy per cycle. How much heat energy is exhausted per cycle?
A) 60 J
B) 45 J
C) 55 J
D) 72 J
E) 79 J

$\begin{aligned} & y=y_{m} \sin (k x-\omega t), \quad \omega=\frac{2 \pi}{T}, k=\frac{2 \pi}{\lambda} \\ & \mathrm{v}=\sqrt{\frac{\tau}{\mu}}, \quad \mathrm{P}_{\text {avg }}=\frac{1}{2} \mu v \omega^{2} \mathrm{y}_{\mathrm{m}}^{2}, \\ & y=2 y_{m} \cos (\phi / 2) \sin (k x-\omega t+\phi / 2) \end{aligned}$	$\begin{aligned} & v_{r m s}=\sqrt{\frac{3 R T}{M}}, \quad K_{a v}=\frac{3}{2} k T, \quad P V=n R T=N k T \\ & Q=n c_{P} \Delta T, \quad Q=n c_{V} \Delta T, \quad C_{P}=C_{V}+R \\ & W=n R T \ln \left(\frac{V_{f}}{V_{i}}\right), \quad P_{i} V_{i}^{\gamma}=P_{f} V_{f}^{\gamma}, \quad \gamma=\frac{C_{p}}{C_{v}} \end{aligned}$
$\begin{aligned} & y=2 y_{m} \sin (k x) \cos (\omega t) \\ & f_{n}=\frac{n v}{2 L} \quad n=1,2,3 \ldots \\ & f_{n}=\frac{n v}{4 L} \quad n=1,3,5 \ldots \end{aligned}$	$\begin{aligned} & \Delta S=\int_{i}^{f} \frac{d Q}{T}, \quad \Delta S=n R \ln \left(\frac{V_{f}}{V_{i}}\right)+n C_{V} \ln \left(\frac{T_{f}}{T_{i}}\right) \\ & W=\left\|Q_{H}\right\|-\left\|Q_{L}\right\|, \quad \varepsilon_{c}=1-\frac{T_{L}}{T_{H}} \\ & \varepsilon=\frac{W}{Q_{H}}, \quad K=\frac{Q_{L}}{W}, \quad K_{C}=\frac{T_{L}}{T_{H}-T_{L}} \end{aligned}$
$\begin{aligned} & s=s_{m} \cos (k x-\omega t), \Delta p=\Delta p_{m} \sin (k x-\omega t) \\ & \Delta p_{m}=\rho v \omega s_{m}, \quad \mathrm{I}=\frac{1}{2} \rho v \omega^{2} \mathrm{~s}_{\mathrm{m}}{ }^{2}, \beta=10 \log \left(\frac{\mathrm{I}}{\mathrm{I}_{\mathrm{o}}}\right) \\ & \mathrm{v}=\sqrt{\frac{B}{\rho}}, \quad \mathrm{I}=\frac{\mathrm{P}_{\mathrm{s}}}{4 \pi R^{2}}, \quad \Delta L=\frac{\lambda}{2 \pi} \varphi, \\ & \Delta L=m \lambda, \quad \Delta L=(m+1 / 2) \lambda \quad m=0,1,2 \ldots, \\ & f^{\prime}=\left(\frac{v \pm v_{D}}{v \pm v_{s}}\right) f \end{aligned}$	$\begin{aligned} & \text { Constants: } \\ & \hline \mathrm{I}_{\mathrm{o}}=10^{-12} \mathrm{~W} / \mathrm{m}^{2} \\ & \mathrm{l} \text { Liter }=10^{-3} \mathrm{~m}^{3} \\ & \mathrm{l} \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} \\ & R=8.31 \mathrm{~J} / \mathrm{mol} \mathrm{~K} \\ & N_{A}=6.02 \times 10^{23} \\ & k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\ & \mu=\text { micro }=10^{-6}, n=\text { nano }=10^{-9} \\ & v=343 \mathrm{~m} / \mathrm{s} \\ & \sigma=5.67 \times 10^{-8} \mathrm{~W} /\left(\mathrm{m}^{2} . \mathrm{K}^{4}\right) \end{aligned}$
$\begin{aligned} & T_{c}=T-273, \quad T_{F}=\frac{9}{5} T_{c}+32 \\ & \Delta L=\alpha L \Delta T, \quad \Delta V=\beta V \Delta T, \quad \beta=3 \alpha \\ & Q=m L, \quad Q=m c \Delta T, \quad W=\int P d V \\ & \Delta E_{\text {int }}=Q-W \\ & P_{\text {cond }}=\frac{k A\left(T_{H}-T_{C}\right)}{L}, \quad P_{\text {rad }}=\sigma \varepsilon A T^{4} \end{aligned}$	$\begin{aligned} & \overline{c=4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}} \\ & L_{F}=333 \mathrm{~kJ} / \mathrm{kg} \\ & L_{V}=2256 \mathrm{~kJ} / \mathrm{kg} \end{aligned}$

