Q1.
An 8.00 m long wire with a mass of 10.0 g is under a tension of 25.0 N . A transverse wave for which the wavelength is 0.100 m , and the amplitude is 3.70 mm is propagating on the wire. The magnitude of the maximum transverse acceleration of a point on the wire is:
A) $29.2 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2}$
B) $41.0 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2}$
C) $35.0 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}$
D) $39.0 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}$
E) $52.5 \times 10^{2} \mathrm{~m} / \mathrm{s}^{2}$

Sec\# Wave - I - The speed of a Traveling Wave
Grade\# 53

Q2.

A sinusoidal transverse wave travels with a speed of $30.0 \mathrm{~m} / \mathrm{s}$ on a string of length 8.00 m and mass 6.00 g . The average power of the wave is 50.0 W . What is the average power of the wave if the tension is increased such that the wave speed is doubled while keeping both the wavelength and the amplitude fixed.
A) 400 W
B) 300 W
C) 200 W
D) 600 W
E) 700 W

Sec\# Wave - I - Energy and Power of a Traveling String Wave
Grade\# 49

Q3.

Figure 1 shows a standing wave on a string under a fixed tension and oscillating at a frequency f. How many antinodes will there be if the frequency is doubled?

Fig\#

A) 6
B) 8
C) 10
D) 4
E) 5

Sec\# Wave - I - Standing Waves and Resonance
Grade\# 58

Phys102	First Major-122	Zero Version
Coordinator: Sunaidi	Wednesday, March 06, 2013	Page: 2

Q4.
Two identical waves having a phase difference of 0.127λ and moving in the same direction along a stretched string. They interfere with each other and the amplitude of the resultant wave is 14.0 mm . What is the amplitude of each wave?
A) 7.60 mm
B) 3.28 mm
C) 5.01 mm
D) 8.20 mm
E) 2.88 mm

Sec\# Wave - I - Interference of Waves

Grade\# 53
Q5.
A standing sound wave in a pipe has five nodes and five antinodes. Find the harmonic number n for this standing wave.
A) 9
B) 8
C) 7
D) 12
E) 10

Sec\# Wave - II - Source of Musical Sound
Grade\# 46

Q6.

The pressure in a travelling sound wave is given by the equation
$\Delta \mathrm{p}=(1.00 \mathrm{~Pa}) \sin \pi\left[\left(0.900 \mathrm{~m}^{-1}\right) \mathrm{x}-\left(315 \mathrm{~s}^{-1}\right) \mathrm{t}\right]$
Find the sound level of the wave (Take the density of air $\rho_{\text {air }}=1.21 \mathrm{~kg} / \mathrm{m}^{3}$).
A) 90.7 dB
B) 100 dB
C) 85.0 dB
D) 75.0 dB
E) 120 dB

Sec\# Wave - II - Intensity and Sound Level
Grade\# 48

Phys102	First Major-122	Zero Version
Coordinator: Sunaidi	Wednesday, March 06, 2013	Page: 3

Q7.

Figure 2 shows two point sources S_{1} and S_{2}, which are in phase and emit identical waves of wavelength λ. Initially, the sources are at equal distances from point P. Then S_{1} is moved directly toward P by a distance equal to $\lambda / 4$ and S_{2} is moved directly away from P by a distance equal to $\lambda / 4$. Now the waves at P :

Fig\#

A) Are exactly out of phase.
B) Are exactly in phase.
C) Have some intermediate phase.
D) Have path difference equal to $\lambda / 4$.
E) Have phase difference equal to $\pi / 4$.

Sec\# Wave - II - Interference

Grade\# 53

Q8.

A sound source and a truck are approaching each other with speeds of $50.0 \mathrm{~m} / \mathrm{s}$ and $30.0 \mathrm{~m} / \mathrm{s}$ respectively. The source emits sound waves at a frequency of 0.150 MHz . Find the wavelength of the sound waves reflected back to the source.
(The speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$)
A) 0.141 cm
B) 1.20 cm
C) 0.213 cm
D) 0.532 cm
E) 0.921 cm

Sec\# Wave - II - The Doppler Effect
Grade\# 42

Q9.
A sample of a gas undergoes a transition from an initial state i to a final state f by two different paths, if and ibf, as shown in Figure 3. The energy transferred to the gas as heat along the path if is $10 p_{i} V_{i}$. Find the change in internal energy of the gas for the path ibf.

Fig\#

A) $6 p_{i} V_{i}$
B) $p_{i} V_{i}$
C) $(3 / 2) p_{i} V_{i}$
D) $10 p_{i} V_{i}$
E) $(5 / 2) p_{i} V_{i}$

Sec\# Temerature, Heat, and the First Law of Thermodynamics - The First Law of Thermodynamics
Grade\# 55

Q10.
A cubic tank filled with 5.0 kg of water is insulated from all sides except its top which is covered with a square glass sheet of length 2.0 m and thickness 3.0 cm . The water is initially at $20^{\circ} \mathrm{C}$. It is exposed for 20 seconds to the outside environment where the temperature is $55^{\circ} \mathrm{C}$. Find the change in the temperature of water (assume that heat is distributed uniformly in the water). $\left(\mathrm{K}_{\text {glass }}=1.0 \mathrm{~W} / \mathrm{m} . \mathrm{K}\right)$
A) $4.5^{\circ} \mathrm{C}$
B) $2.5^{\circ} \mathrm{C}$
C) $0.6{ }^{\circ} \mathrm{C}$
D) $1.5^{\circ} \mathrm{C}$
E) $8.5^{\circ} \mathrm{C}$

Sec\# Temerature, Heat, and the First Law of Thermodynamics - Heat Transfer Mechanisms Grade\# 43

Phys102	First Major-122	Zero Version
Coordinator: Sunaidi	Wednesday, March 06, 2013	Page: 5

Q11.
Water at $90.0^{\circ} \mathrm{C}$ fills a Pyrex tube (radius $=2.00 \mathrm{~cm}$, height $=12.0 \mathrm{~cm}$) to the rim. If we ignore the expansion of the Pyrex tube, what will be the height of water if it is cooled to $10.0^{\circ} \mathrm{C}$. (The coefficient of volume expansion of water is $207 \times 10^{-6} / \mathrm{C}^{0}$)
A) 11.8 cm
B) 10.4 cm
C) 10.9 cm
D) 9.00 cm
E) 9.70 cm

Sec\# Temerature, Heat, and the First Law of Thermodynamics - Thermal Expansion Grade\# 46

Q12.
Two different solid objects have the same mass and temperature. Equal quantities of energy are absorbed as heat by each. Their final temperatures may be different because the samples have different:
A) Specific heats
B) Coefficients of thermal expansion
C) Latent heat of fusion
D) volumes
E) thermal conductivities

Sec\# Temerature, Heat, and the First Law of Thermodynamics - The Absorption of Heat by Solids and Liquids
Grade\# 63

Q13.
An ideal gas initially at a pressure of 1.2 atm and temperature $74{ }^{\circ} \mathrm{C}$ undergoes an isothermal expansion to twice its original volume. During the expansion, the gas absorbs 20 kJ of heat. Find the number of moles for this gas?
A) 10
B) 12
C) 15
D) 18
E) 20

Sec\# The kinetic Theory of Gases - Ideal Gases
Grade\# 55

Q14.
An ideal gas with a volume V_{0} and a pressure P_{0} undergoes a free expansion to volume V_{1} and pressure P_{1} where $V_{1}=32 V_{0}$. The gas is then compressed adiabatically to the original volume V_{0} and pressure $4 \mathrm{P}_{0}$. The ratio of specific heats, γ, of the ideal gas is:
A) $7 / 5$
B) $2 / 5$
C) $3 / 5$
D) $1 / 5$
E) $9 / 5$

Sec\# The kinetic Theory of Gases - The Adiabatic Expansion of an Ideal Gas Grade\# 45

Q15.
The pressure of a monatomic ideal gas is doubled, while its volume is reduced by a factor of four. What is the ratio of the new rms speed of the atoms to the initial rms speed?
A) 0.71
B) 1.0
C) 0.47
D) 0.28
E) 0.87

Sec\# The kinetic Theory of Gases - Pressure, Temperature and RMS Speed Grade\# 58

Q16.
Three moles of an ideal diatomic gas are taken through the cycle acba as shown in
Figure 4, where $c b$ is an adiabatic process. The temperature of the gas in states a, c, and b are $\mathrm{T}_{\mathrm{a}}=300 \mathrm{~K}, \mathrm{~T}_{\mathrm{c}}=492 \mathrm{~K}$, and $\mathrm{T}_{\mathrm{b}}=600 \mathrm{~K}$ respectively. Calculate the net work for the cycle.

Fig\#

A) -1.95 kJ
B) +1.95 kJ
C) +3.84 kJ
D) -3.84 kJ
E) 0

Phys102	First Major-122	Zero Version
Coordinator: Sunaidi	Wednesday, March 06, 2013	Page: 7

Sec\# The kinetic Theory of Gases - The Molar Specific Heats of an Ideal Gas Grade\# 46

Q17.
An ideal refrigerator has a coefficient of performance of 5.0. If the temperature in the room is $31^{\circ} \mathrm{C}$, what is the temperature inside the refrigerator?
A) $-20{ }^{\circ} \mathrm{C}$
B) $-5.0^{\circ} \mathrm{C}$
C) $-10{ }^{\circ} \mathrm{C}$
D) $-30{ }^{\circ} \mathrm{C}$
E) Zero

Sec\# Entropy and the Second Law of Thermodynamics - Entropy in the Real World:
Refrigerators
Grade\# 61
Q18.
Consider an ideal engine that operates between two reservoirs at 300 K and 600 K and absorbs $1.44 \times 10^{6} \mathrm{~J}$ per cycle. What is the power output of this engine if it completes 10 cycles per minute?
A) 120 kW
B) 100 kW
C) 350 kW
D) 440 kW
E) 500 kW

Sec\# Entropy and the Second Law of Thermodynamics - Entropy in the Real World:
Engines
Grade\# 47
Q19.
An ideal monatomic gas of volume of 6.00 L , originally at $127^{\circ} \mathrm{C}$ and a pressure of 3.00 atm undergoes an isothermal expansion to 4 times the original volume. What is the change in entropy of the gas for this process?
A) $6.3 \mathrm{~J} / \mathrm{K}$
B) $5.0 \mathrm{~J} / \mathrm{K}$
C) $3.4 \mathrm{~J} / \mathrm{K}$
D) $4.0 \mathrm{~J} / \mathrm{K}$
E) $7.1 \mathrm{~J} / \mathrm{K}$

Sec\# Entropy and the Second Law of Thermodynamics - Change in Entropy Grade\# 57

Phys102	First Major-122	Zero Version
Coordinator: Sunaidi	Wednesday, March 06, 2013	Page: 8

Q20.
A piece of iron of mass 2.00 kg at a temperature of 880 K is thrown into a large lake whose temperature is 280 K . Assume the lake is so large that its temperature change can be ignored. If the change in entropy of the iron-lake system is $898 \mathrm{~J} / \mathrm{K}$, calculate the specific heat of iron.
A) $450 \mathrm{~J} / \mathrm{kg} \mathrm{K}$
B) $350 \mathrm{~J} / \mathrm{kg} \mathrm{K}$
C) $230 \mathrm{~J} / \mathrm{kg} \mathrm{K}$
D) $190 \mathrm{~J} / \mathrm{kg} \mathrm{K}$
E) $580 \mathrm{~J} / \mathrm{kg} \mathrm{K}$

Sec\# Entropy and the Second Law of Thermodynamics - The Second Law of Thermodynamics
Grade\# 47

Test Expected Average $=51$

$$
\begin{aligned}
& \mathrm{v}=\sqrt{\frac{\tau}{\mu}} \\
& \mathrm{v}=\sqrt{\frac{\mathrm{B}}{\rho}} \\
& \mathrm{y}=\mathrm{y}_{\mathrm{m}} \sin (\mathrm{kx}-\omega \mathrm{t}) \\
& \mathrm{P}_{\mathrm{avg}}=\frac{1}{2} \mu \omega^{2} \mathrm{y}_{\mathrm{m}}{ }^{2} \mathrm{v} \\
& \mathrm{~S}=S_{m} \cos (k x-\omega t) \\
& \Delta \mathrm{P}=\Delta \mathrm{P}_{\mathrm{m}} \sin (\mathrm{kx}-\omega \mathrm{t}) \\
& \Delta \mathrm{P}_{\mathrm{m}}=\rho \mathrm{v} \omega \mathrm{~S}_{\mathrm{m}} \\
& \mathrm{I}=1 / 2 \rho\left(\omega \mathrm{~S}_{\mathrm{m}}\right)^{2} \mathrm{v} \\
& \beta=10 \log \left(\frac{\mathrm{I}}{\mathrm{I}_{\mathrm{o}}}\right) \\
& \mathrm{I}=\frac{\mathrm{P}_{\mathrm{s}}}{2} \\
& \mathrm{f}^{\prime}=\mathrm{f}\left(\frac{\mathrm{v} \pm \mathrm{v}_{\mathrm{D}}}{\mathrm{v} \mathrm{\mp} \mathrm{v}_{\mathrm{s}}}\right) \\
& y=2 y_{m} \cos (\phi / 2) \sin (k x-\omega t+\phi / 2) \\
& y=2 y_{m} \operatorname{sinkx} \cos \omega t \\
& \mathrm{f}_{\mathrm{n}}=\frac{\mathrm{nv}}{2 \mathrm{~L}}, \\
& \mathrm{f}_{\mathrm{n}}=\frac{\mathrm{nv}}{4 \mathrm{~L}}, \\
& \Delta \mathrm{~L}=\alpha \mathrm{L} \Delta \mathrm{~T}=1,2,3, \ldots \\
& \Delta \mathrm{~V}=\beta \mathrm{V} \Delta \mathrm{~T} \\
& \mathrm{PV}=\mathrm{nRT}=\mathrm{NkT} \\
& \Delta \mathrm{~L}=\frac{\lambda}{2 \pi} \varphi \\
& \Delta \mathrm{~L}=\mathrm{m} \lambda \\
& \Delta \mathrm{~L}=\left(\mathrm{m}+\frac{1}{2}\right) \lambda, \quad \mathrm{m}=0,1,2, \ldots .,
\end{aligned}
$$

$\mathrm{PV}^{\gamma}=$ constant
$\mathrm{TV}^{\gamma-1}=$ constant
$T_{F}=\frac{9}{5} T_{C}+32, T_{c}=T-273$
$\mathrm{Q}=\mathrm{mL} \quad \mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$
$\mathrm{Q}=\mathrm{n} \mathrm{C}_{\mathrm{V}} \Delta \mathrm{T}$
$\mathrm{Q}=\mathrm{n}_{\mathrm{C}} \Delta \mathrm{T}$
$\Delta \mathrm{E}_{\text {int }}=\mathrm{Q}-\mathrm{W}$
$\Delta \mathrm{E}_{\text {int }}=\mathrm{nC}_{\mathrm{v}} \Delta \mathrm{T}$
$\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{R}$
$\mathrm{W}=\int \mathrm{PdV}$
$W=n R T \ln \left(V_{f} / V_{i}\right)$
$\mathrm{P}_{\text {cond }}=\frac{\mathrm{Q}}{\mathrm{t}}=\frac{\mathrm{kA}\left(\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}\right)}{\mathrm{L}}$
$\frac{m \overline{v^{2}}}{2}=(3 / 2) \mathrm{kT}$
$\mathrm{v}_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}}$
$\mathrm{W}=\mathrm{Q}_{\mathrm{H}}-\mathrm{Q}_{\mathrm{L}}$
$\varepsilon=\frac{\mathrm{W}}{\mathrm{Q}_{\mathrm{H}}}=1-\frac{\mathrm{Q}_{\mathrm{L}}}{\mathrm{Q}_{\mathrm{H}}}$
$K=\frac{Q_{L}}{W}$
$\frac{Q_{L}}{Q_{H}}=\frac{T_{L}}{T_{H}}, \Delta \mathrm{~S}=\int \frac{\mathrm{dQ}}{\mathrm{T}}$

Constants:

1 Liter $=10^{-3} \mathrm{~m}^{3}$
$1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
$\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
$\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23}$ molecules $/ \mathrm{mole}$
$\mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$\mathrm{I}_{0}=10^{-12} \mathrm{~W} / \mathrm{m}^{2}$

For water:

$c=4190 \mathrm{~J} / \mathrm{kg} . \mathrm{K}$
$L_{F}=333 \mathrm{~kJ} / \mathrm{K}$
$L_{V}=2256 \mathrm{~kJ} / \mathrm{K}$

