Q1.
The angular position of a point on the rim of a rotating wheel of radius R is given by: $\theta(\mathrm{t})=6.0 t+3.0 t^{2}-2.0 t^{3}$, where θ is in radians and t is in seconds. What is the average angular acceleration for a point at $R / 2$ for the time interval between $t=0$ and $\mathrm{t}=5 \mathrm{~s}$?
A) $-24 \mathrm{rad} / \mathrm{s}^{2}$
B) $+24 \mathrm{rad} / \mathrm{s}^{2}$
C) 0
D) $-12 \mathrm{rad} / \mathrm{s}^{2}$
E) $+12 \mathrm{rad} / \mathrm{s}^{2}$

Ans:
$\theta(\mathrm{t})=6.0 t+3.0 t^{2}-2.0 t^{3} \quad \Rightarrow \quad \omega(\mathrm{t})=6.0+6.0 t-6.0 t^{2}$
$\omega(0)=6.0, \quad \omega(5)=-114$
$\Rightarrow \bar{\alpha}=\frac{\Delta \omega}{\Delta t}=\frac{-114-6}{5-0}=-24$

Q2.

An object of mass $m=15 \mathrm{~kg}$ initially at rest explodes into two pieces of masses 10 kg and 5.0 kg . The velocity of the 5.0 kg mass is $4.0 \mathrm{~m} / \mathrm{s}$ along the positive x -axis. Find the kinetic energy of the 10 kg piece.
A) 20 J
B) 30 J
C) 40 J
D) 50 J
E) 60 J

Ans:

$$
P_{f}=P_{i} \Rightarrow-10 v+5 \times 4=0 \Rightarrow v=2 \mathrm{~m} / \mathrm{s}
$$

$\Rightarrow k=\frac{1}{2} m v^{2}=\frac{1}{2} \times 10 \times 2^{2}=20 \mathrm{~J}$.

Q3.
Figure 1 shows a 0.5 kg ball moving at $2.5 \mathrm{~m} / \mathrm{s}$ collides head on with a 0.25 kg ball moving in the opposite direction at $5.0 \mathrm{~m} / \mathrm{s}$. Determine the final kinetic energy of the 0.5 kg ball if the collision is perfectly elastic.

Figure 1
A) 1.6 J
B) 2.3 J
C) 6.4 J
D) 11 J
E) 0.11 J

Ans:
$\mathrm{m}_{1}=0.5 ; \mathrm{v}_{1 \mathrm{i}}=2.5 ; \mathrm{m}_{2}=0.25 ; \mathrm{v}_{2 \mathrm{i}}=-5$
$\mathrm{v}_{1 \mathrm{f}}=\frac{\mathrm{m}_{1-} \mathrm{m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}} \mathrm{v}_{1 \mathrm{i}}+\frac{2 \mathrm{~m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}} \mathrm{v}_{2 \mathrm{i}}=-2.5$
$\mathrm{k}=0.5 \mathrm{~m}_{1} \mathrm{v}_{1} \mathrm{f}^{2}=1.5625=1.6 \mathrm{~J}$

Q4.

A uniform disk starts from rest and rotates, about fixed central axis, with a constant angular acceleration. It reaches an angular velocity of $13.7 \mathrm{rad} / \mathrm{s}$ when it has completed 5.00 revolutions. What is the angular velocity when it has completed 9.00 revolutions?
A) $18.4 \mathrm{rad} / \mathrm{s}$
B) $17.2 \mathrm{rad} / \mathrm{s}$
C) $11.2 \mathrm{rad} / \mathrm{s}$
D) $8.20 \mathrm{rad} / \mathrm{s}$
E) 0

Ans:
First calculate the acceleration
$\alpha=\frac{\omega_{f}^{2}-\omega_{i}^{2}}{2 \Delta \theta}=\frac{(13.7)^{2}-0}{2 \times 5(2 \pi)}=2.987 \mathrm{rad} / \mathrm{s}^{2}$
Second $\omega(9$ revolutions $)=\sqrt{\omega_{i}^{2}+2 \alpha \Delta \theta}=\sqrt{0+2 \times 2.987 \times 9 \times 2 \pi}=18.38 \mathrm{rad} / \mathrm{s}$

Q5.
A uniform disk is rotating with angular velocity ω about a fixed axis perpendicular to its plane and passing through a point on its edge. Find the ratio of its kinetic energy about this axis of rotation to its kinetic energy about a parallel axis passing through its center of mass and rotating with the same angular velocity ω.
A) 3
B) 9
C) $\sqrt{3}$
D) 4
E) 1

Ans:

The ratio is:

$$
\frac{K_{\text {edge }}}{K_{\text {center }}}=\frac{\frac{1}{2}\left(M R^{2}+\frac{1}{2} M R^{2}\right) \omega^{2}}{\frac{1}{2}\left(\frac{1}{2} M R^{2}\right) \omega^{2}}=3
$$

Q6.

A torque, of $2.0 \mathrm{~N} \cdot \mathrm{~m}$, is applied to a pulley rotating about fixed central axis. Starting from rest, the angular speed of the pulley after 4.0 s is $120 \mathrm{rev} / \mathrm{min}$. What is the rotational inertia, in $\mathrm{kg} \cdot \mathrm{m}^{2}$, of the pulley?
A) 0.64
B) 0.81
C) 0.22
D) 0.12
E) 1.00

Ans:
$\tau=I \alpha \Rightarrow I=\frac{\tau}{\alpha} ; \quad \omega=\omega_{o}+\alpha t \Rightarrow \alpha=\frac{\omega_{o}}{t}=\frac{120 \times 2 \pi / 60}{4}=\pi$
$\therefore I=\frac{2}{\pi}=0.637$

Q7.
A string (one end attached to the ceiling) is wound around a uniform solid cylinder of mass $\mathrm{M}=2.0 \mathrm{~kg}$ and radius $\mathrm{R}=10 \mathrm{~cm}$ (see Figure 2). The cylinder starts falling from rest as the string unwinds. The linear acceleration, in $\mathrm{m} / \mathrm{s}^{2}$, of the cylinder is:

Figure 2
A) 6.5
B) 4.3
C) 8.5
D) 1.1
E) 2.2

Ans:

$m a=m g-T \quad$ (1),
$\because I_{c m} \alpha=T R ; \quad \alpha=\frac{a}{\mathrm{R}} \quad \Rightarrow \quad \frac{1}{2} m R^{2}\left(\frac{a}{R}\right)=T R \quad \Rightarrow \quad \frac{1}{2} m a=T$
$\therefore(1) \Rightarrow a=\frac{2}{3} \mathrm{~g}=6.53 \mathrm{~m} / \mathrm{s}^{2}$

Q8.
A hoop rolls without sliding on a horizontal floor. The ratio of its translational kinetic energy to its rotational kinetic energy (about its central axis) is
A) 1
B) 2
C) 3
D) $1 / 3$
E) $1 / 2$

Ans:

$$
\frac{K_{\text {edge }}}{K_{\text {center }}}=\frac{\frac{1}{2} m v^{2}}{\frac{1}{2} I \omega^{2}}=\frac{\frac{1}{2} m v^{2}}{\frac{1}{2}\left(m R^{2}\right)(v / R)^{2}}=1
$$

Phys101-Term 142	Third Major	Code: 20
Coordinator: Dr.I.Nasser	Saturday, April 25, 2015	Page: 5

Q9.
A single force acts on a particle P. Rank each of the orientations of the force shown in Figure 3 according to the magnitude of the time rate of change of the particle's angular momentum about the point O , least to greatest.

Figure 3

A) 1 and 2 tie, then 4 , then 3
B) $1,2,3,4$
C) 1 and 2 tie, then 3 , then 4
D) 1 and 2 tie, then 3 and 4 tie
E) All are the same

Ans:
A

Q10.
A 6.0 kg particle moves to the right at $4.0 \mathrm{~m} / \mathrm{s}$ as shown in Figure 4. Its angular momentum, in $\mathrm{kg} . \mathrm{m}^{2} / \mathrm{s}$, about point O is:

Figure 4
A) 144 , into the page
B) 0
C) 249 , into the page
D) 144 , out of the page
E) 249 , out of the page

Ans:

The angle between the tails of the momentum vector and the position vector is 30°; $\mathrm{L}=\mathrm{m} \mathrm{vr} \sin 30=6(4)(12) \sin 30=144 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}$ into the page

Q11.

A merry-go-round of radius 2.0 m is rotating about a frictionless pivot. It makes one revolution every 5.0 s . The moment of inertia of the merry-go-round (about an axis through its center) is $500 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. A child of mass 25 kg , originally standing at the rim, walks radially in to the exact center. The child can be considered as a point mass. What is the new angular velocity, in rad/sec, of the merry-go-round?
A) 1.5
B) 1.3
C) 2.3
D) 1.9
E) 0.5

Ans:
Apply the conservation of angular momentum (there are no net external torques on the system of merry-go-round and child). Thus we have $\mathrm{L}=$ constant $=\mathrm{I}_{\mathrm{i}} \omega_{i}=\mathrm{I}_{\mathrm{f}} \omega_{f}$ or $\omega_{f}=\mathrm{I}_{\mathrm{i}} \omega_{i} / I_{f} \omega_{i}$

The initial angular velocity and the initial and final moments of inertia. SinceT $=5 \mathrm{~s}$, so the initial angular velocity is
$\omega_{i}=2 \pi / \mathrm{T}=1.257 \mathrm{rad} / \mathrm{s}$
The initial moment-of-inertia is that of the merry-go-round plus that of the child located at the rim:
$\mathrm{I}_{\mathrm{i}}=500 \mathrm{Kg} \cdot \mathrm{m}^{2}+\mathrm{mR}^{2}=500 \mathrm{Kg} \cdot \mathrm{m}^{2}+(25 \mathrm{~kg})(2 \mathrm{~m})^{2}=600 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
Since the child ends up at the center ($\mathrm{r}=0$), she/he contributes no rotational inertia in the final situation, so the I_{f} is just that of the merry-go-round, i.e.
$\mathrm{I}_{\mathrm{f}}=500 \mathrm{Kg} \cdot \mathrm{m}^{2}$
Plugging these in gives
$\omega_{f}=\left(600 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)(1.257 \mathrm{rad} / \mathrm{s}) /\left(500 \mathrm{Kg} \cdot \mathrm{m}^{2}\right)$
$=1.51 \mathrm{rad} / \mathrm{sec}$

Q12.

A uniform 100 kg beam is held in a vertical position by a pin at its lower end, a cable at its upper end, and by applying a horizontal force $P=75 \mathrm{~N}$ as shown in Figure 5. Find the tension in the cable.
A) 54 N
B) 99 N
C) 14 N
D) 10 N
E) 76 N

Take the torque about the pin
$\tau_{o}=T \times 8 \times \cos 30^{\circ}-75 \times 5=0 \Rightarrow T=\frac{75 \times 5}{8 \times \cos 30^{\circ}}=54.13$

Q13.

A certain wire, hanging from a ceiling, stretches 0.9 cm when outward force with magnitude F is applied to the free end. The same force is applied to a wire of the same material but with three times the diameter and three times the length. The second wire stretches:
A) 0.3 cm
B) 0.1 cm
C) 0.9 cm
D) 2.7 cm
E) 8.1 cm

Ans:

Calculate the ratio:
$\frac{\Delta L_{1}}{\Delta L_{2}}=\frac{F_{1} L_{1} / A_{1} E_{1}}{F_{2} L_{2} / A_{2} E_{2}}=\frac{L_{1} A_{2}}{L_{2} A_{1}}=\frac{1 L_{1} \times \pi(3 d / 2)^{2}}{3 L_{1} \times \pi(d / 2)^{2}}=3$
$\Delta L_{2}=\frac{\Delta L_{1}}{3}=\frac{0.9}{3}=0.3$

Q14.

As shown in Figure 6, a ball with a mass of 1.0 kg and a speed of $25 \mathrm{~m} / \mathrm{s}$ hits a vertical wall at an angle of 45° and rebounds with the same speed with the same angle. Find the change in the linear momentum, in $\operatorname{kg} \frac{\mathrm{m}}{\mathrm{s}}$, of the ball.
A) $-35 \hat{\mathrm{i}}$
B) $+35 \hat{\mathrm{i}}$
C) $-70 \hat{\mathrm{i}}$
D) $+70 \hat{\mathrm{i}}$
E) $-25 \hat{j}$

Figure 6

Ans:
$\Delta P_{y}=0$
$\Delta P_{x}=(-m v-m v) \cos 45^{\circ}=-2 \times 1 \times 25 \times 0.707=-35.36$

Q15.

An object is formed by three identical uniform thin rods, each of length L and mass M , as shown in Figure 7. Determine the x and y coordinates, (x, y), of the center of mass of this object.

Figure 7
A) $(\mathrm{L} / 3, \mathrm{~L} / 2)$
B) $(0, L / 2)$
C) $(\mathrm{L}, \mathrm{L} / 2)$
D) $(\mathrm{L} / 2, \mathrm{~L})$
E) $(\mathrm{L} / 4, \mathrm{~L} / 4)$

Ans:

$$
\begin{aligned}
& x_{c m}=\frac{M(0)+M(L / 2)+M(L / 2)}{3 M}=L / 3 \\
& y_{c m}=\frac{M(L / 2)+M(0)+M(L)}{3 M}=L / 2
\end{aligned}
$$

