Q1.
The angular position of a point on the rim of a rotating wheel of radius R is given by:

$$
\theta(\mathrm{t})=6.0 t+3.0 t^{2}-2.0 t^{3}
$$

where θ is in radians and t is in seconds. What is the average angular acceleration for a point at $\mathrm{R} / 2$ for the time interval between $\mathrm{t}=0$ and $\mathrm{t}=5 \mathrm{~s}$?
A) $-24 \mathrm{rad} / \mathrm{s}^{2}$
B) $+24 \mathrm{rad} / \mathrm{s}^{2}$
C) 0
D) $-12 \mathrm{rad} / \mathrm{s}^{2}$
E) $+12 \mathrm{rad} / \mathrm{s}^{2}$

Q2.

An object of mass $m=15 \mathrm{~kg}$ initially at rest explodes into two pieces of masses 10 kg and 5.0 kg . The velocity of the 5.0 kg mass is $4.0 \mathrm{~m} / \mathrm{s}$ along the positive x -axis. Find the kinetic energy of the 10 kg piece.
A) 20 J
B) 30 J
C) 40 J
D) 50 J
E) 60 J

Q3.

Figure 1 shows a 0.5 kg ball moving at $2.5 \mathrm{~m} / \mathrm{s}$ collides head on with a 0.25 kg ball moving in the opposite direction at $5.0 \mathrm{~m} / \mathrm{s}$. Determine the final kinetic energy of the 0.5 kg ball if the collision is perfectly elastic.

A) 1.6 J
B) 2.3 J
C) 6.4 J
D) 11 J
E) 0.11 J

Q4.
A uniform disk starts from rest and rotates, about fixed central axis, with a constant angular acceleration. It reaches an angular velocity of $13.7 \mathrm{rad} / \mathrm{s}$ when it has completed 5.00 revolutions. What is the angular velocity when it has completed 9.00 revolutions?
A) $18.4 \mathrm{rad} / \mathrm{s}$
B) $17.2 \mathrm{rad} / \mathrm{s}$
C) $11.2 \mathrm{rad} / \mathrm{s}$
D) $8.20 \mathrm{rad} / \mathrm{s}$
E) 0

Q5.
A uniform disk is rotating with angular velocity ω about a fixed axis perpendicular to its plane and passing through a point on its edge. Find the ratio of its kinetic energy about this axis of rotation to its kinetic energy about a parallel axis passing through its center of mass and rotating with the same angular velocity ω.
A) 3
B) 9
C) $\sqrt{3}$
D) 4
E) 1

Q6.

A torque, of $2.0 \mathrm{~N} \cdot \mathrm{~m}$, is applied to a pulley rotating about fixed central axis. Starting from rest, the angular speed of the pulley after 4.0 s is $120 \mathrm{rev} / \mathrm{min}$. What is the rotational inertia, in kg. m^{2}, of the pulley?
A) 0.64
B) 0.81
C) 0.22
D) 0.12
E) 1.00

Q7.

A string (one end attached to the ceiling) is wound around a uniform solid cylinder of mass $\mathrm{M}=2.0 \mathrm{~kg}$ and radius $\mathrm{R}=10 \mathrm{~cm}$ (see Figure 2). The cylinder starts falling from rest as the string unwinds. The linear acceleration, in $\mathrm{m} / \mathrm{s}^{2}$, of the cylinder is:

A) 6.5
B) 4.3
C) 8.5
D) 1.1
E) 2.2

Q8.
A hoop rolls without sliding on a horizontal floor. The ratio of its translational kinetic energy to its rotational kinetic energy (about its central axis) is
A) 1
B) 2
C) 3
D) $1 / 3$
E) $1 / 2$

Q9.

A single force acts on a particle P. Rank each of the orientations of the force shown in Figure 3 according to the magnitude of the time rate of change of the particle's angular momentum about the point O , least to greatest.

A) 1 and 2 tie, then 4 , then 3
B) $1,2,3,4$
C) 1 and 2 tie, then 3 , then 4
D) 1 and 2 tie, then 3 and 4 tie
E) All are the same

Q10.
A 6.0 kg particle moves to the right at $4.0 \mathrm{~m} / \mathrm{s}$ as shown in Figure 4. Its angular momentum, in $\mathrm{kg} . \mathrm{m}^{2} / \mathrm{s}$, about point O is:

A) 144 , into the page
B) 0
C) 249 , into the page
D) 144 , out of the page
E) 249 , out of the page

Q11.
A merry-go-round of radius 2.0 m is rotating about a frictionless pivot. It makes one revolution every 5.0 s . The moment of inertia of the merry-go-round (about an axis through its center) is $500 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. A child of mass 25 kg , originally standing at the rim, walks radially in to the exact center. The child can be considered as a point mass. What is the new angular velocity, in rad/sec, of the merry-go-round?
A) 1.5
B) 1.3
C) 2.3
D) 1.9
E) 0.5

Q12.
A uniform 100 kg beam is held in a vertical position by a pin at its lower end, a cable at its upper end, and by applying a horizontal force $P=75 \mathrm{~N}$ as shown in Figure 5. Find the tension in the cable.

A) 54 N
B) 99 N
C) 14 N
D) 10 N
E) 76 N

Q13.
A certain wire, hanging from a ceiling, stretches 0.9 cm when outward force with magnitude F is applied to the free end. The same force is applied to a wire of the same material but with three times the diameter and three times the length. The second wire stretches:
A) 0.3 cm
B) 0.1 cm
C) 0.9 cm
D) 2.7 cm
E) 8.1 cm

Q14.
As shown in Figure 6, a ball with a mass of 1.0 kg and a speed of $25 \mathrm{~m} / \mathrm{s}$ hits a vertical wall at an angle of 45° and rebounds with the same speed with the same angle. Find the change in the linear momentum, in $\mathrm{kg} \frac{\mathrm{m}}{\mathrm{s}}$, of the ball.

A) $-35 \hat{\mathrm{i}}$
B) $+35 \hat{\mathrm{i}}$
C) $-70 \hat{\mathrm{i}}$
D) $+70 \hat{i}$
E) $-25 \hat{j}$

Q15.
An object is formed by three identical uniform thin rods, each of length L and mass M , as shown in Figure 7. Determine the x and y coordinates, (x,y), of the center of mass of this object.

A) $(\mathrm{L} / 3, \mathrm{~L} / 2)$
B) $(0, \mathrm{~L} / 2)$
C) $(\mathrm{L}, \mathrm{L} / 2)$
D) $(\mathrm{L} / 2, \mathrm{~L})$
E) $(\mathrm{L} / 4, \mathrm{~L} / 4)$

