Phys101	Second Major-182	Zero Version
Coordinator: Dr. S. Kunwar	Monday, March 25, 2019	Page: 1

Q1.

An object moves in a horizontal circle at constant speed. The work done by the centripetal force is zero because:

A) the centripetal force is perpendicular to the velocity

- B) the force and positon are perpendicular to each other
- C) there is no friction
- D) the magnitude of the acceleration is zero
- E) the displacement for each revolution is zero

Ans:

А

Q2.

A machine carries a 4.0 kg package from an initial position of $\vec{d}_1 = (2.0 \text{ m})\hat{j}$ at t = 0 to a final position of $\vec{d}_2 = (2.0 \text{ m})\hat{i} + (3.0 \text{ m})\hat{j}$ at t = 4.0 s. The constant force applied by the machine on the package is $\vec{F} = (4.0 \text{ N})\hat{i}$. Find the average power of the machine's force on the package.

A) 2.0 W
B) 3.0 W
C) 1.0 W
D) 4.0 W
E) 5.0 W

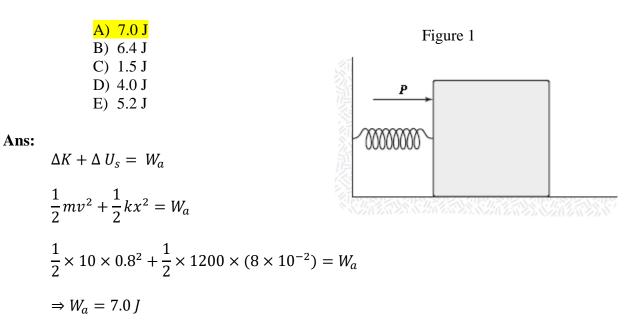
Ans:

$$P_{av} = \frac{W}{t} = \frac{\Delta \vec{d} \cdot F}{(4-0)} = \frac{(2\hat{\imath} + 3\hat{\jmath} - 2\hat{\jmath}) \cdot 4\hat{\imath}}{4} = \frac{8}{4} = 2 W$$

Phys101	Second Major-182	Zero Version
Coordinator: Dr. S. Kunwar	Monday, March 25, 2019	Page: 2

\cap	2	
Q	3	,

An 8000-N car is traveling at 12 m/s along a horizontal road. When the brakes are applied, the car skids (slides) to a stop in 4.0 s. Find the work done on the car.


A) -5.9×10^4 J B) $+5.9 \times 10^4$ J C) $+1.5 \times 10^4$ J D) -2.1×10^4 J E) $+2.1 \times 10^4$ J

Ans:

$$\Delta K = W \Rightarrow W = K - K_0 = 0 - \frac{1}{2}mv_0^2$$

Q4.

A 10-kg block on a horizontal frictionless surface is attached to a light spring (spring constant, $k = 1.2 \times 10^3$ N/m). The block is initially at rest at its equilibrium position. Then a force of magnitude P is applied to the block parallel to the surface, as shown in **Figure 1**. When the block is 8.0×10^{-2} m from the equilibrium position, it has a speed of 0.80 m/s. How much work is done on the block by the force P as the block moves the 8.0×10^{-2} m?

Phys101	Second Major-182	Zero Version
Coordinator: Dr. S. Kunwar	Monday, March 25, 2019	Page: 3

Q5.

A particle is moved from point A to point B under the action of two forces. One of the forces is conservative and the other one is non-conservative, but none of the forces is a frictional force. The kinetic energies of the particle at points A and B are equal if

A) the sum of the works of the two forces is zero.

- B) the work of the conservative force is equal to the work of the non-conservative force.
- C) the work of the conservative force is zero.
- D) the work of the non-conservative force is zero.
- E) None of these answers

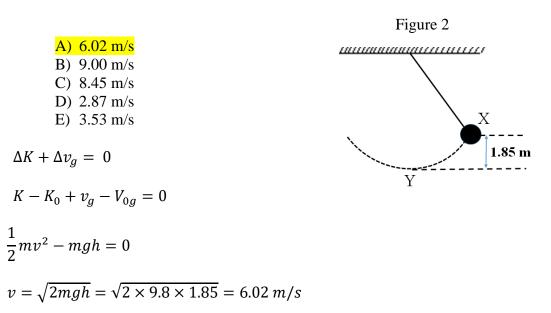
Ans:

$$\Delta K - W_C = W_N$$

$$\Delta K = W_C + W_N$$

Q6.

Ans:

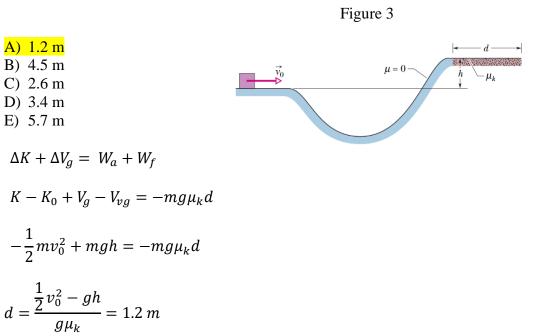

A child whose weight is 267 N slides down a 6.10 m long slide that makes an angle of 20.0° with the horizontal. The coefficient of kinetic friction between the slide and the child is 0.100. If the child starts at the top with a speed of 0.457 m/s, what is the child's speed at the bottom? (Ignore air resistance)

A) 5.46 m/s B) 2.35 m/s C) 4.00 m/s D) 1.41 m/s E) 2.32 m/s	
$\Delta K + \Delta U_g = W_a + W_4$	Л
$\frac{1}{2}mv^2 - \frac{1}{2}mv_0^2 - mgsin20^\circ = -mgcos\theta\mu X$	
$v = \sqrt{v_0^2 + 2gx(\sin 20 - \cos 20\mu)} = 5.46 m/s$	

Phys101	Second Major-182	Zero Version
Coordinator: Dr. S. Kunwar	Monday, March 25, 2019	Page: 4

Q7.

A simple pendulum consists of a 2.00 kg mass attached to a string. The mass is released from rest at X as shown in **Figure 2**. If the height of X from the lowest point Y is 1.85 m, find the speed of the mass at point Y. (Ignore air resistance)

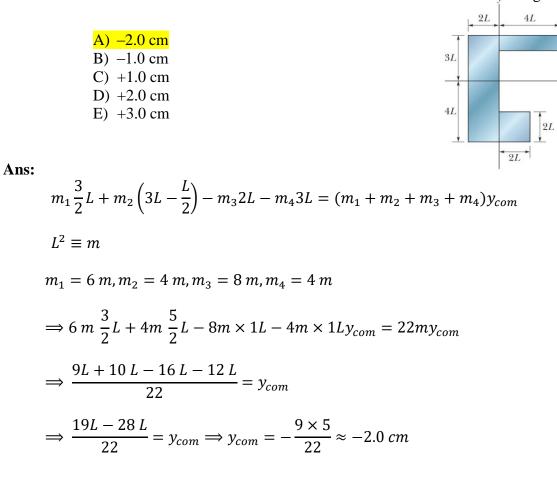


Q8.

Ans:

Ans:

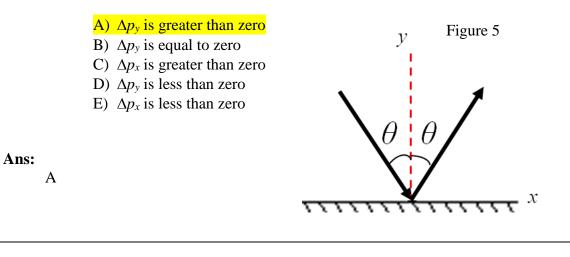
In **Figure 3**, a block slides along a track from one level to a higher level after passing through a valley. The track is frictionless until the block reaches the higher level. On the rough surface, a frictional force stops the block in a distance d. The block's initial speed v_0 is 6.0 m/s, the height difference h is 1.1 m, and μ_k is 0.60. Find d. (Ignore air resistance)



Phys101	Second Major-182	Zero Version
Coordinator: Dr. S. Kunwar	Monday, March 25, 2019	Page: 5

Q9.

What is the y-coordinate of the center of mass for the uniform plate shown in Figure 4 if L = 5.0 cm? Figure 4


L

Phys101	Second Major-182	Zero Version
Coordinator: Dr. S. Kunwar	Monday, March 25, 2019	Page: 6

Q10.

A ball hits a ground and rebounds with the same speed and same angle, as shown in **Figure 5**. Which one of the following statements is correct regarding the change in momentum of the ball?

Q11.

Cart A, with a mass of 0.20 kg, travels on a horizontal air track at 3.0 m/s and hits cart B, which has a mass of 0.40 kg and is initially at rest. After the collision, the center of mass of the two cart system has a speed of:

A) 1.0 m/s

- B) 2.0 m/s
- C) 3.0 m/s
- D) 4.0 m/s
- E) zero

Ans:

 $m_1 v_{i2} + m_1 v_{2i} = (m_1 + m_2) v_{com}$

$$v_{com} = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$$

$$v_{1i} = 20 \ m/s$$
, $v_{1i} = 0$

Phys101	Second Major-182	Zero Version
Coordinator: Dr. S. Kunwar	Monday, March 25, 2019	Page: 7

Q12.

A 2.0-kg object sliding on a frictionless horizontal surface explodes into two 1.0-kg pieces. After the explosion, the velocities of the pieces are (1) 8.0 m/s, north; and (2) 4.0 m/s, 30° south of west. What was the magnitude of the original velocity of the 2.0-kg object?

A)	3.5 m/s
B)	1.0 m/s
C)	2.6 m/s
D)	4.2 m/s
E)	5.3 m/s

Ans:

 $2v_x = 1 \times 4\cos 30$

$$v_x = -2\cos 30^\circ = -1.732 \ m/s$$

 $v_y = \left(\frac{8 - 4\sin 30^\circ}{2}\right) = 3 \ m/s$
 $v = \sqrt{v_x^2 + v_y^2} = 3.46 \ m/s$

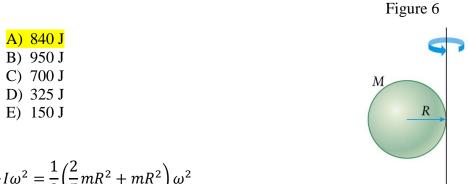
Q13.

A wheel starts from rest and rotates with constant angular acceleration about a fixed axis passing through its center. It completes the first revolution 6.0 s after it started. How long after it started will the wheel complete the second revolution?

A)	<mark>8.5 s</mark>
B)	5.0 s
C)	1.9 s
D)	3.2 s
E)	6.7 s

Ans:

$$\omega_0 = 0; \quad \theta = 2\pi; \ t = 6 s$$


$$\theta = \omega_0 t + \frac{1}{2} \alpha t^2$$
$$\alpha = \frac{2\theta}{t^2} = \frac{4\pi}{36}$$
$$t_2 = \sqrt{\frac{2 \times 4\pi}{\alpha}} = \sqrt{\frac{2 \times 4\pi \times 36}{4\pi}} = 8.5 s$$

c-20-n-20-s-0-e-0-fg-1-fo-1

Phys101	Second Major-182	Zero Version
Coordinator: Dr. S. Kunwar	Monday, March 25, 2019	Page: 8

Q14.

A uniform sphere of radius R = 2.0 m and mass M = 3.0 kg rotates freely with constant angular speed of 10 rad/s about a vertical axis that is tangent to an equatorial plane of the sphere, as shown in **Figure 6**. Find the kinetic energy of the sphere.

Ans:

$$I = \frac{1}{2}I\omega^2 = \frac{1}{2}\left(\frac{2}{5}mR^2 + mR^2\right)$$
$$= \frac{1}{2} \times \frac{7}{5}mR^2\omega^2$$

Q15.

Ans:

A mass ($M_1 = 5.0$ kg) is connected by a light cord to a mass ($M_2 = 4.0$ kg) which slides on a frictionless surface, as shown in the **Figure 7**. The pulley (a disc of radius = 0.20 m) rotates about a frictionless axle. If the magnitude of acceleration of M_2 is 3.5 m/s², what is the moment of inertia of the pulley?

A) 0.20 kg . m² B) 0.70 kg . m² C) 0.95 kg . m² D) 0.63 kg . m² E) 0.36 kg . m² $T_1 - M_1 g = -M_1 a \Longrightarrow T_1 = Mg - M_1 a$ $T_2 = M_2 a$ $-T_1 R + T_2 R = -I\alpha$ $M_1 g R - M_1 a R - M_2 a R = I \frac{a}{R}$ $I = \left(+ \frac{M_1 g}{a} - M_1 - M_2 \right) R^2 = 0.2 Kg m^2$

Figure 7

Phys101	Second Major-182	Zero Version
Coordinator: Dr. S. Kunwar	Monday, March 25, 2019	Page: 9

Q16.

An engine delivers a power of 1.20×10^5 W to rotate a disc with the constant angular speed ω . If the work done by the engine in one revolution is 3000 J, find the value of ω .

A)	251 rad/s	
B)	360 rad/s	
C)	140 rad/s	
D)	438 rad/s	
E)	523 rad/s	
17	147	
V	W	

Ans:

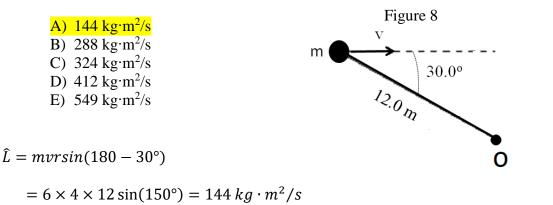
$$P = \frac{W}{t} \Rightarrow t = \frac{W}{P}$$
$$\theta = \frac{2\pi}{t} = 251 \ rad/s$$

Q17.

A forward force acting on the axle accelerates a smoothly rolling wheel on a horizontal surface. If the wheel does not slide, the frictional force of the surface on the wheel is:

A) in the backward direction

- B) in the forward direction
- C) in the upward direction
- D) zero
- E) into the ground


Ans:

A

Q18.

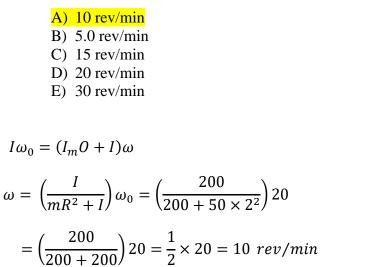
Ans:

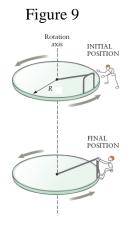
A particle of mass m = 6.00 kg moves to the right at the velocity v = 4.00 m/s as shown in **Figure 8**. The magnitude of its angular momentum about the point O is:

Phys101	Second Major-182	Zero Version
Coordinator: Dr. S. Kunwar	Monday, March 25, 2019	Page: 10

Q19.

Ans:


A 2.0-kg block is rotating in horizontal xy-plane. While it is at the point P(2.0 m, 3.0 m), the block has an acceleration of $\vec{a} = (4.0 \text{ m/s}^2)\hat{i} - (3.0 \text{ m/s}^2)\hat{j}$. Find the torque on the block at point P, relative to the origin.


A) $(-36 \text{ N} \cdot \text{m}) \hat{k}$ B) $(+36 \text{ N} \cdot \text{m}) \hat{k}$ C) $(+24 \text{ N} \cdot \text{m}) \hat{k}$ D) $(-24 \text{ N} \cdot \text{m}) \hat{k}$ E) $(+14 \text{ N} \cdot \text{m}) \hat{k}$ $\hat{r} = 2\hat{\iota} + 3\hat{\jmath}$ $\tau = \Delta \hat{r} \times \hat{F} = (2\hat{\iota} + 3\hat{\jmath}) \times m\hat{a}$ $= (2\hat{\iota} + 3\hat{\jmath}) \times (8\hat{\iota} - 6\hat{\jmath})$ $= 24\hat{k} - 12\hat{k} = -36\hat{k}$

Q20.

Ans:

A merry-go-round of radius R = 2.0 m has a rotational inertia I = 200 kg.m² and is rotating at 20 rev/min, about a frictionless vertical axle as shown in **Figure 9**. A 50 kg boy jumps onto the edge of the merry-go-round and sits down on the edge. Considering the boy to be a point mass, the new angular speed of the merry-go-round is:

