Phys101	Second Major-112	Zero Version
Posted on 28-04-12	Tuesday, April 17, 2012	Page: 1

Please discard the solution posted earlier on 18-04-12. There is a correction in question #8.

Q1.

A force $\vec{F} = (12\hat{i} + B\hat{j})N$, where B is a constant, acts on an object and does 46 joules work as the object moves from the origin to the point $\vec{r} = (13\hat{i} + 11\hat{j})m$. The value of B is:

Answer:

$$W = \vec{F} \cdot \vec{r} = (12\hat{i} + B\hat{j}) \cdot (13\hat{i} + 11\hat{j}) = (12)(13) + 11B = 46$$
$$\Rightarrow B = \frac{46 - 156}{11} = -10 \text{ N}$$

A) -10 N B) +10 N C) -12 N D) +15 N E) +14 N

Stat# A_53_DIS_0.45_PBS_0.37_B_19_C_10_D_8_E_10_EXP_60_NUM_472

Q2.

A 9.00-kg box slides from rest down a frictionless incline from a height of 5.00 m as shown in **Figure 1**. A constant frictional force, introduced at point **A**, brings the block to rest at point **B**, 20.0 m to the right of point **A**. What is the coefficient of kinetic friction, μ_k , between the box and surface AB?

A) 0.25

- B) 0.11
- C) 0.33D) 0.47
- E) 0.52
- L) 0.52

Stat# A_52_DIS_0.71_PBS_0.51_B_7_C_12_D_17_E_11_EXP_50_NUM_472

Phys101	Second Major-112	Zero Version
Posted on 28-04-12	Tuesday, April 17, 2012	Page: 2

Q3.

In **Figure 2**, a 5.0-kg block is moving at 5.0 m/s along a horizontal frictionless surface toward an ideal spring that is attached to a wall. After the block collides with the spring, the spring is compressed a maximum distance of x_m . What is the speed of the block when the spring is compressed to only $x_m/2$?

Answer:

$$\frac{1}{2}mv_0^2 = \frac{1}{2}kX_m^2,$$

$$\Delta K + \Delta U = 0 \Longrightarrow \frac{1}{2}mv_f^2 - \frac{1}{2}mv_0^2 + \frac{1}{2}k\left(\frac{1}{2}X_m\right)^2 = 0$$

$$\frac{1}{2}mv_f^2 = \frac{1}{2}mv_0^2 - \frac{1}{2}k\left(\frac{1}{2}X_m\right)^2 = \frac{1}{2}mv_0^2 - \frac{1}{8}kX_m^2 = \frac{3}{8}mv_0^2 = \frac{3}{8}m5^2$$

$$v_f = \sqrt{\frac{3}{4}}5 = 4.3 \text{ m/s}$$

- A) 4.3 m/s B) 3.4 m/s
- C) 7.1 m/s
- D) 5.2 m/s
- E) 6.3 m/s

Stat# A_23_DIS_0.26_PBS_0.28_B_41_C_11_D_11_E_14_EXP_45_NUM_472

Phys101	Second Major-112	Zero Version
Posted on 28-04-12	Tuesday, April 17, 2012	Page: 3

Q4.

A net force of $(50 \,\hat{i})N$ is acting on a 2.0-kg box that was initially at rest at the origin. At the *instant* the object has the position vector $(2.0 \hat{i})m$, the rate at which the force is doing work on the box is: Answer:

$$a = \frac{F}{m} = \frac{50}{2} = 25 \text{ m/s}^2,$$

$$v_f^2 = v_0^2 + 2ax = 0 + 2(25)2 \Longrightarrow v_f = 10 \text{ m/s}$$

$$P = Fv_f = (50)(10) = 500 \text{ W}.$$

A) 500 W

B) 250 W

- C) 75 W
- D) 100 W
- E) 300 W

Stat# A_21_DIS_0.25_PBS_0.27_B_18_C_8_D_48_E_5_EXP_55_NUM_472

F

Q5.

The only force acting on a particle is a conservative force **F**. If the particle is at a point A, the potential energy of the system is 80 J. If the particle moves from point A to point B, the work done on the particle by \mathbf{F} is +20 J. As the particle reaches point B, the potential energy of the system is:

Answer:

$$W_{AB} = -\Delta U = -(U_B - U_A) \Longrightarrow 20 = -(U_B - 80)$$
$$\implies U_B = 60 \text{ J}$$

A) 60 J B) 100 J

C) 20 J

D) -100 J

E) - 60 J

Stat# A 48 DIS 0.27 PBS 0.18 B 29 C 6 D 6 E 11 EXP 55 NUM 472

Phys101	Second Major-112	Zero Version
Posted on 28-04-12	Tuesday, April 17, 2012	Page: 4

Q6.

A 2.00-kg mass is moved along a rough vertical circular track (radius R = 0.800 m) as shown in **Figure 3**. The speed of the mass at point A is $v_A = 8.00$ m/s, and at point B is $v_B = 5.00$ m/s. How much work is done on the mass between A and B by the force of friction?

Answer:

Work-energy theorem implies:

$$W_{f} = \Delta K + \Delta U = \left(\frac{1}{2}mv_{B}^{2} - \frac{1}{2}mv_{A}^{2}\right) + mg(2R - 0)$$
$$= \left(\frac{1}{2}2 \times 5^{2} - \frac{1}{2}2 \times 8^{2}\right) + 2 \times 9.8(2 \times 0.8 - 0) = -7.64 \text{ J}$$
A) - 7.64 J
B) - 8.23 J
C) - 2.91 J
D) - 3.36 J
E) 0 J

Stat# A_36_DIS_0.39_PBS_0.33_B_8_C_14_D_18_E_23_EXP_45_NUM_472

Phys101	Second Major-112	Zero Version
Posted on 28-04-12	Tuesday, April 17, 2012	Page: 5

Q7.

A compressed-spring-gun, with k = 300 N/m, is used to shoot a ball, of mass m = 10 g, straight up into the air, see **Figure 4**. If the ball reaches a maximum height h = 10.0 m, the compressed distance of the spring is: (neglect any friction and assume the spring obeys Hooke's law)?

Phys101	Second Major-112	Zero Version
Posted on 28-04-12	Tuesday, April 17, 2012	Page: 6

Q8.

The two masses in the **Figure 5** are released from rest. After the 3.0-kg mass had fallen 1.5 m, it reaches a speed of 3.76 m/s. How much work is done during this time interval by the frictional force on the 2.0 kg mass? (Assume that the pulley is frictionless and massless)

Answer:

$$\begin{split} \Delta K + \Delta U + \Delta E_{th} &= 0\\ \Delta K + \Delta U - W_f &= 0\\ \Rightarrow\\ W_f &= \Delta K + \Delta U\\ W_f &= \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 - m_1gh\\ W_f &= \frac{1}{2}3 \times 3.76^2 + \frac{1}{2}2 \times 3.76^2 - 3 \times 9.8 \times 1.5\\ &= -8.8 \text{ J}. \end{split}$$

A) - 8.8 J B) - 6.7 J C) 20 J D) - 12 J E) 28 J

Stat# A_100_DIS_0.00_PBS_0.00_B_0_C_0_D_0_E_0_EXP_50_NUM_472

Phys101	Second Major-112	Zero Version
Posted on 28-04-12	Tuesday, April 17, 2012	Page: 7

Q9.

Figure 6 shows a 10.0 cm long uniform rod with mass 2.0 kg, attached to two uniform spheres of masses $m_1 = 15.0$ kg and $m_2 = 30.0$ kg and diameters 2.0 cm and 7.0 cm, respectively. Find the x-coordinate of the COM of the system. Center of the small sphere (m_1) is at the origin of the coordinate system.

Answer:

Because of the uniformity and placement of the two spheres at the ends of the uniform sphere, the CM is clearly on a line passing through the rod. Call this the x—axis as shown in the figure. The origin is most easily placed at the center of the 15.0 kg Sphere. Then measuring m in kg and x in cm,

 $MX = m_1 x_1 + m_2 x_2 + m_3 x_3$ 47.0 X = 15(0.0) + 2(1.0 + 5.0) + 30 (1 + 10 + 3.5)

47X = 12 + 435 = 447

X = 9.51 cm to the right of the center of the 15.0 kg sphere.

A) 9.51 cm B) - 1.7 cm C) 20 cm D) - 12 cm E) 2.8 cm

Stat# A_52_DIS_0.41_PBS_0.35_B_9_C_9_D_7_E_23_EXP_50_NUM_472

Phys101	Second Major-112	Zero Version
Posted on 28-04-12	Tuesday, April 17, 2012	Page: 8

Q10.

A 10.0 g object with initial velocity $\vec{v}_i = (24.0 \,\hat{i}) \, m/s$ has a collision with a wall. After collision, the final velocity of the object is $\vec{v}_f = -(12.0 \,\hat{i}) \, m/s$. If the collision lasted 0.01 s, what is the average force acted on the object during the collision?

Answer:

$$\vec{P}_{i} = 0.01 \text{ kg}(24.0 \hat{i}) \text{ m/s} = (0.240 \hat{i}) \text{ kg} \cdot \text{m/s};$$

$$\vec{P}_{f} = 0.01 \text{ kg}(-12.0 \hat{i}) \text{ m/s} = (-0.120 \hat{i}) \text{ kg} \cdot \text{m/s}.$$

$$\vec{J} = \Delta \vec{P} = \vec{P}_{f} - \vec{P}_{i} = (-0.12 \hat{i} - 0.24 \hat{i}) = (-0.36 \hat{i}) \text{ N} \cdot \text{s},$$

$$\vec{F} = \frac{\vec{J}}{\Delta t} = \left(\frac{-0.36 \hat{i}}{0.01}\right) \text{ N} = (-36 \hat{i}) \text{ N}$$

A) $(-36 \hat{i}) \text{ N}$
B) $(-12 \hat{i}) \text{ N}$
C) $(24 \hat{i}) \text{ N}$
D) $(-16 \hat{i}) \text{ N}$
E) $(-48 \hat{j}) \text{ N}$

Stat# A_69_DIS_0.48_PBS_0.39_B_15_C_4_D_8_E_4_EXP_50_NUM_472

Phys101	Second Major-112	Zero Version
Posted on 28-04-12	Tuesday, April 17, 2012	Page: 9

Q11.

A 1.0-kg block (at rest on a horizontal frictionless surface) is connected to a spring (k = 200 N/m) whose other end is fixed to a wall (see **Figure 7**). A 2.00-kg block, moving at 4.00 m/s, collides with the 1.00-kg block. If the two blocks stick together after the collision, what will be the maximum compression of the spring when the two blocks momentarily stop?

Answer:

Conservation of momentum $\Rightarrow mv = (m + M)V$

$$\Rightarrow V = \frac{2 \times 4}{(2+1)} \approx 2.67 \frac{\mathrm{m}}{\mathrm{s}}$$

Conservation of mechanical energy after collision

$$\Rightarrow \frac{1}{2}(m+M)V^2 = \frac{1}{2}k x^2$$
$$\Rightarrow x = V \sqrt{\frac{(m+M)}{k}} = 2.67 \sqrt{\frac{3}{200}} = 0.33 \text{ m}$$

A) 0.33 m
B) 0.22 m
C) 1.12 m
C) 2.12

D) 0.13 m E) 0.08 m

Stat# A_35_DIS_0.50_PBS_0.41_B_22_C_10_D_17_E_16_EXP_45_NUM_472

Phys101	Second Major-112	Zero Version
Posted on 28-04-12	Tuesday, April 17, 2012	Page: 10

Q12.

Block A with mass 2.0 kg and block B with mass 3.0 kg are moving towards each other along the x-axis. The velocity of block A is 50 m/s while block B velocity is -20 m/s. Both the blocks undergo inelastic collision. The velocity of the center of mass of the two blocks system after the collision is:

Answer:

Conservation of momentum of COM $\Rightarrow V_{COM}$ (before collision) = V_{COM} (After collision) $(m_A + m_B)V_{COM} = m_A v_A + m_B v_B = 2.0 \times 50 + 3.0 \times (-20) =$

$$\Rightarrow V_{COM} = \frac{40}{(2+3)} = 8.0 \frac{\text{m}}{\text{s}}$$

A) 8.0 m/s

B) 0

C) 5.0 m/s

D) 30 m/s

E) 70 m/s

Stat# A_68_DIS_0.47_PBS_0.41_B_7_C_7_D_14_E_4_EXP_55_NUM_472

Phys101	Second Major-112	Zero Version
Posted on 28-04-12	Tuesday, April 17, 2012	Page: 11

Q13.

A wheel (of mass M and radius = 0.20 m) is mounted on a frictionless, horizontal axle. A light cord wrapped around the wheel supports a mass m = 0.50 kg, as shown in the **Figure 8**. When released from rest the mass m falls with a downward acceleration of 5.0 m/s^2 . What is the moment of inertia of the wheel about its axle? [Consider the cord does not slip]

Answer:

$$ma = mg - T \implies T = 2.4 \text{ N}$$
$$I = \frac{\text{Tr}}{\alpha(=a/r)} = \frac{2.4 \times 0.2}{5/0.2} = 0.019 \text{ kg.m}^2$$

A) 0.019 kg·m² B) 0.027 kg·m² C) 0.016 kg·m² D) 0.023 kg·m² E) 0.032 kg·m²

Stat# A_31_DIS_0.53_PBS_0.44_B_18_C_9_D_22_E_19_EXP_55_NUM_472

Phys101	Second Major-112	Zero Version
Posted on 28-04-12	Tuesday, April 17, 2012	Page: 12

Q14.

Figure 9 shows a uniform thin rod, with mass $m_1 = 2.00$ kg and length L = 10.0 cm, attached to a uniform solid sphere, of mass $m_2 = 3.00$ kg and diameter 7.00 cm. Find the rotational inertia of the system about the y-axis.

Answer:

$$I_{y} = \frac{1}{3}m_{1}L^{2} + \left[\frac{2}{5}m_{2}R^{2} + m_{2}(R)^{2}\right]$$
$$= \frac{1}{3}2(0.1^{2}) + \left[\frac{2}{5}3 \times 0.035^{2} + 3(0.035)^{2}\right] = 0.0118 \text{ kg.m}^{2}$$

A) 0.0118 kg.m² B) 0.0103 kg.m² C) 0.00814 kg.m² D) 0.00980 kg.m² E) 0.00667 kg.m²

Stat# A_26_DIS_0.31_PBS_0.32_B_17_C_27_D_11_E_18_EXP_50_NUM_472

Phys101	Second Major-112	Zero Version
Posted on 28-04-12	Tuesday, April 17, 2012	Page: 13

Q15.

A wheel with a 0.10-m radius is rotating at an angular velocity of 36 rev/s. It then slows down uniformly to 15 rev/s over a 3.0-s interval. What is the magnitude of the tangential acceleration of a point on the edge of the wheel? **Answer:**

$$\omega_f = \omega_i + \alpha t \Rightarrow \alpha = \frac{15 - 36}{3} = -7 \text{ rev/s}^2$$
$$a = \alpha r = |7| \times 2\pi \times 0.1 = 4.4 \text{ m/s}^2$$
A) 4.4 m/s²

B) 1.5 m/s^2 C) 41 m/s^2

D) 0.70 m/s^2

E) 7.0 m/s^2

Stat# A_49_DIS_0.58_PBS_0.45_B_9_C_6_D_21_E_14_EXP_50_NUM_472

Q16.

A fan, initially at rest, is accelerated to angular velocity $\omega = 2400 \text{ rev/min}$ in 40 s by an electric motor. The average power of the motor during this time is 1.2×10^5 W. What is the torque on the fan about the axis of rotation?

Answer:

$$\Delta \theta = \left(\frac{\omega + \omega_o}{2}\right) \Box t = \left(\frac{\frac{2400 \times 2\pi}{60} + 0}{2}\right) 40 = 1600\pi$$
$$P = \frac{\Delta W}{\Delta t} = \tau \frac{\Delta \theta}{\Delta t} \Longrightarrow \tau = \frac{P}{\left(\frac{\Delta \theta}{\Delta t}\right)} = \frac{1.2 \times 10^5}{\left(\frac{1600\pi}{40}\right)} = 955 \text{ N.m}$$

A) 955 N.m
B) 100 N.m
C) 723 N.m
D) 432 N.m
E) 600 N.m

Stat# A_21_DIS_0.29_PBS_0.30_B_11_C_19_D_33_E_15_EXP_50_NUM_472

Phys101	Second Major-112	Zero Version
Posted on 28-04-12	Tuesday, April 17, 2012	Page: 14

Q17.

A man, holding equal mass m in each hand, is standing on a frictionless disk, rotating about an axis passing through its center. Initially, the man has both hands down, as shown in **Figure 10A**, and the system (man + disk) rotates with an angular velocity ω_i . Finally the man stretches his arms horizontally, as shown in **Figure 10B**, and the new angular velocity of the system is ω_f . The man's final rotational kinetic energy K_f with respect to his initial rotational kinetic energy K_i:

- A) must decrease.
- B) must increase.
- C) must remain the same.
- D) may increase or decrease depending on his initial angular velocity $\boldsymbol{\omega}_i$.
- E) may increase or decrease depending on his final angular velocity $\omega_{\rm f}$.

Stat# A_45_DIS_0.22_PBS_0.18_B_26_C_19_D_4_E_4_EXP_55_NUM_472

Phys101	Second Major-112	Zero Version
Posted on 28-04-12	Tuesday, April 17, 2012	Page: 15

Q18.

Two equal masses $m_1 = m_2 = 1.50$ kg are joined with a massless rod with length L= 50.0 cm. The rod is free to rotate in a horizontal plane without friction about a vertical axis through its center. With the rod initially at rest, an object with mass M = 0.500 kg is moving horizontally towards m_2 with a velocity 4.50 m/s, as shown in **Figure 11** (top view). Finally the object collides with m_2 and sticks to it and the rod rotates. The angular speed of the rod-masses system after the collision is:

Answer:

Conservation of angular momentum gives:

$$Mv (L/2) = I_{total} \omega_{f} \Rightarrow Mv \left(\frac{L}{2}\right) = (M + 2m) \left(\frac{L}{2}\right)^{2} \omega_{f}$$
$$\Rightarrow \omega_{f} = \frac{Mv \left(\frac{L}{2}\right)}{(M + 2m) \left(\frac{L}{2}\right)^{2}} = \frac{0.5 \times 4.5}{(0.5 + 2 \times 1.5) \left(\frac{0.5}{2}\right)} = 2.57 \text{ rad/s}$$
ad/s

A) 2.57 rad/s
B) 1.24 rad/s
C) 0.541 rad/s
D) 5.14 rad/s
E) 1.41 rad/s

Stat# A_31_DIS_0.34_PBS_0.31_B_15_C_12_D_19_E_22_EXP_50_NUM_472

Phys101	Second Major-112	Zero Version
Posted on 28-04-12	Tuesday, April 17, 2012	Page: 16

Q19.

A circular disc of mass 4.0 kg and radius 10 cm rotates about a vertical axis passing through its center. The variation of its angular momentum (L) with time (t) is given in the **Figure 12**. Find the angular acceleration of the disc at t = 3.0 s?

Answer:

A) -100 rad/s^2 B) $+15 \text{ rad/s}^2$ C) $+50 \text{ rad/s}^2$ D) $+100 \text{ rad/s}^2$ E) -5.6 rad/s^2

Stat# A_29_DIS_0.46_PBS_0.39_B_18_C_15_D_18_E_20_EXP_50_NUM_472

Phys101	Second Major-112	Zero Version
Posted on 28-04-12	Tuesday, April 17, 2012	Page: 17

Q20.

A hoop rolls smoothly, along a horizontal surface, with constant center of mass speed v_{com} . Its rotational kinetic energy is:

A) the same as its translational kinetic energy

- B) half its translational kinetic energy
- C) twice its translational kinetic energy
- D) four times its translational kinetic energy
- E) one-third its translational kinetic energy

Stat# A_55_DIS_0.52_PBS_0.39_B_13_C_19_D_6_E_7_EXP_55_NUM_472