Phys101 Second Major-112 Zero Version

## Please discard the solution posted earlier on 18-04-12. There is a correction in question \#8.

Q1.
A force $\vec{F}=(12 \hat{i}+B \hat{j}) N$, where $B$ is a constant, acts on an object and does 46 joules work as the object moves from the origin to the point $\vec{r}=(13 \hat{i}+11 \hat{j}) \mathrm{m}$. The value of $B$ is:

## Answer:

$$
\begin{aligned}
& W=\vec{F} \cdot \vec{r}=(12 \hat{i}+B \hat{j}) \cdot(13 \hat{i}+11 \hat{j})=(12)(13)+11 B=46 \\
& \Rightarrow B=\frac{46-156}{11}=-10 \mathrm{~N}
\end{aligned}
$$

A) -10 N
B) +10 N
C) -12 N
D) +15 N
E) +14 N

Stat\# A_53_DIS_0.45_PBS_0.37_B_19_C_10_D_8_E_10_EXP_60_NUM_472
Q2.
A 9.00-kg box slides from rest down a frictionless incline from a height of 5.00 m as shown in Figure 1. A constant frictional force, introduced at point A, brings the block to rest at point B, 20.0 m to the right of point $\mathbf{A}$. What is the coefficient of kinetic friction, $\mu_{\mathrm{k}}$, between the box and surface $A B$ ?


Answer:

$$
m g h=\mu_{k} m g s \Rightarrow \mu_{k}=\frac{\mathrm{h}}{\mathrm{~s}}=\frac{5.0}{20.0}=0.25
$$

A) 0.25
B) 0.11
C) 0.33
D) 0.47
E) 0.52

Stat\# A_52_DIS_0.71_PBS_0.51_B_7_C_12_D_17_E_11_EXP_50_NUM_472

Q3.
In Figure 2, a $5.0-\mathrm{kg}$ block is moving at $5.0 \mathrm{~m} / \mathrm{s}$ along a horizontal frictionless surface toward an ideal spring that is attached to a wall. After the block collides with the spring, the spring is compressed a maximum distance of $x_{m}$. What is the speed of the block when the spring is compressed to only $\mathrm{x}_{\mathrm{m}} / 2$ ?

## Answer:

$$
\begin{aligned}
& \frac{1}{2} m v_{0}^{2}=\frac{1}{2} k X_{m}^{2}, \\
& \Delta K+\Delta U=0 \Rightarrow \frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{0}^{2}+\frac{1}{2} k\left(\frac{1}{2} X_{m}\right)^{2}=0 \\
& \frac{1}{2} m v_{f}^{2}=\frac{1}{2} m v_{0}^{2}-\frac{1}{2} k\left(\frac{1}{2} X_{m}\right)^{2}=\frac{1}{2} m v_{0}^{2}-\frac{1}{8} k X_{m}^{2}=\frac{3}{8} m v_{0}^{2}=\frac{3}{8} m 5^{2} \\
& v_{f}=\sqrt{\frac{3}{4}} 5=4.3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

A) $4.3 \mathrm{~m} / \mathrm{s}$
B) $3.4 \mathrm{~m} / \mathrm{s}$
C) $7.1 \mathrm{~m} / \mathrm{s}$
D) $5.2 \mathrm{~m} / \mathrm{s}$
E) $6.3 \mathrm{~m} / \mathrm{s}$

Stat\# A_23_DIS_0.26_PBS_0.28_B_41_C_11_D_11_E_14_EXP_45_NUM_472
Phys101 Second Major-112 Zero Version

Q4.
A net force of $(50 \hat{\mathrm{i}}) \mathrm{N}$ is acting on a $2.0-\mathrm{kg}$ box that was initially at rest at the origin. At the instant the object has the position vector $(2.0 \hat{i}) \mathrm{m}$, the rate at which the force is doing work on the box is:
Answer:

$$
\begin{aligned}
& a=\frac{F}{m}=\frac{50}{2}=25 \mathrm{~m} / \mathrm{s}^{2} \\
& v_{f}^{2}=v_{0}^{2}+2 a x=0+2(25) 2 \Rightarrow v_{f}=10 \mathrm{~m} / \mathrm{s} \\
& P=F v_{f}=(50)(10)=500 \mathrm{~W}
\end{aligned}
$$

A) 500 W
B) 250 W
C) 75 W
D) 100 W
E) 300 W

Stat\# A_21_DIS_0.25_PBS_0.27_B_18_C_8_D_48_E_5_EXP_55_NUM_472

Q5.
The only force acting on a particle is a conservative force $F$. If the particle is at point $A$, the potential energy of the system is 80 J . If the particle moves from point $A$ to point $B$, the work done on the particle by $\mathbf{F}$ is +20 J . As the particle reaches point $B$, the potential energy of the system is:
Answer:

$$
\begin{aligned}
W_{A B} & =-\Delta U=-\left(U_{B}-U_{A}\right) \Rightarrow 20=-\left(U_{B}-80\right) \\
& \Rightarrow U_{B}=60 \mathrm{~J}
\end{aligned}
$$

A) 60 J
B) 100 J
C) 20 J
D) -100 J
E) -60 J

Stat\# A_48_DIS_0.27_PBS_0.18_B_29_C_6_D_6_E_11_EXP_55_NUM_472
Phys101 Second Major-112 Zero Version

Q6.
A $2.00-\mathrm{kg}$ mass is moved along a rough vertical circular track (radius $\mathrm{R}=0.800 \mathrm{~m}$ ) as shown in Figure 3. The speed of the mass at point A is $v_{A}=8.00 \mathrm{~m} / \mathrm{s}$, and at point B is $v_{B}=5.00 \mathrm{~m} / \mathrm{s}$. How much work is done on the mass between A and B by the force of friction?


## Answer:

Work-energy theorem implies:

$$
\begin{aligned}
W_{f} & =\Delta K+\Delta U=\left(\frac{1}{2} m v_{B}^{2}-\frac{1}{2} m v_{A}^{2}\right)+m g(2 R-0) \\
& =\left(\frac{1}{2} 2 \times 5^{2}-\frac{1}{2} 2 \times 8^{2}\right)+2 \times 9.8(2 \times 0.8-0)=-7.64 \mathrm{~J}
\end{aligned}
$$

A) -7.64 J
B) -8.23 J
C) -2.91 J
D) -3.36 J
E) $0 \quad \mathrm{~J}$

Stat\# A_36_DIS_0.39_PBS_0.33_B_8_C_14_D_18_E_23_EXP_45_NUM_472

Q7.
A compressed-spring-gun, with $\mathrm{k}=300 \mathrm{~N} / \mathrm{m}$, is used to shoot a ball, of mass $\mathrm{m}=10 \mathrm{~g}$, straight up into the air, see Figure 4. If the ball reaches a maximum height $\mathrm{h}=10.0 \mathrm{~m}$, the compressed distance of the spring is: (neglect any friction and assume the spring obeys Hooke's law)?


Answer:

$$
\begin{aligned}
& m g h=\frac{1}{2} k X_{m}^{2} \Rightarrow 0.01 \times 9.8 \times 10=\frac{1}{2}(300) X_{m}^{2} \\
& X_{m}^{2}=\frac{0.98}{150} \Rightarrow X_{m}=0.081 \mathrm{~m}=8.1 \mathrm{~cm}
\end{aligned}
$$

A) 8.1 cm
B) 5.5 cm
C) 12 cm
D) 3.0 cm
E) 1.3 cm

Stat\# A_47_DIS_0.60_PBS_0.48_B_13_C_7_D_23_E_11_EXP_55_NUM_472

Q8.
The two masses in the Figure 5 are released from rest. After the $3.0-\mathrm{kg}$ mass had fallen 1.5 m , it reaches a speed of $3.76 \mathrm{~m} / \mathrm{s}$. How much work is done during this time interval by the frictional force on the 2.0 kg mass? (Assume that the pulley is frictionless and massless)


Answer:

$$
\begin{aligned}
& \Delta K+\Delta U+\Delta E_{t h}=0 \\
& \Delta K+\Delta U-W_{f}=0 \\
& \Rightarrow \\
& W_{f}
\end{aligned}=\Delta K+\Delta U ~ \begin{aligned}
W_{f} & =\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}-m_{1} g h \\
W_{f} & =\frac{1}{2} 3 \times 3.76^{2}+\frac{1}{2} 2 \times 3.76^{2}-3 \times 9.8 \times 1.5 \\
& =-8.8 \mathrm{~J} .
\end{aligned}
$$

A) -8.8 J
B) -6.7 J
C) 20 J
D) -12 J
E) 28 J

Stat\# A_100_DIS_0.00_PBS_0.00_B_0_C_0_D_0_E_0_EXP_50_NUM_472

| Phys101 | Second Major-112 | Zero Version |
| :--- | :---: | ---: |
| Posted on 28-04-12 | Tuesday, April 17, 2012 | Page: 7 |

Q9.
Figure 6 shows a 10.0 cm long uniform rod with mass 2.0 kg , attached to two uniform spheres of masses $\mathrm{m}_{1}=15.0 \mathrm{~kg}$ and $\mathrm{m}_{2}=30.0 \mathrm{~kg}$ and diameters 2.0 cm and 7.0 cm , respectively. Find the $x$-coordinate of the COM of the system. Center of the small sphere $\left(m_{1}\right)$ is at the origin of the coordinate system.


## Answer:

Because of the uniformity and placement of the two spheres at the ends of the uniform sphere, the CM is clearly on a line passing through the rod. Call this the x -axis as shown in the figure. The origin is most easily placed at the center of the 15.0 kg Sphere. Then measuring m in kg and x in cm ,

$$
\begin{aligned}
M X & =m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3} \\
47.0 x & =15(0.0)+2(1.0+5.0)+30(1+10+3.5)
\end{aligned}
$$

$$
47 X=12+435=447
$$

$X=9.51 \mathrm{~cm}$ to the right of the center of the 15.0 kg sphere.
A) 9.51 cm
B) -1.7 cm
C) 20 cm
D) -12 cm
E) 2.8 cm

Stat\# A_52_DIS_0.41_PBS_0.35_B_9_C_9_D_7_E_23_EXP_50_NUM_472

Q10.
A 10.0 g object with initial velocity $\overrightarrow{\mathrm{v}}_{\mathrm{i}}=(24.0 \hat{\mathrm{i}}) \mathrm{m} / \mathrm{s}$ has a collision with a wall. After collision, the final velocity of the object is $\overrightarrow{\mathrm{v}}_{\mathrm{f}}=-(12.0 \hat{\mathrm{i}}) \mathrm{m} / \mathrm{s}$. If the collision lasted 0.01 s , what is the average force acted on the object during the collision?

## Answer:

$\overrightarrow{\mathrm{P}}_{\mathrm{i}}=0.01 \mathrm{~kg}(24.0 \hat{\mathrm{i}}) \mathrm{m} / \mathrm{s}=(0.240 \hat{\mathrm{i}}) \mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$;
$\overrightarrow{\mathrm{P}_{\mathrm{f}}}=0.01 \mathrm{~kg}(-12.0 \hat{\mathrm{i}}) \mathrm{m} / \mathrm{s}=(-0.120 \hat{\mathrm{i}}) \mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$.
$\overrightarrow{\mathrm{J}}=\Delta \overrightarrow{\mathrm{P}}=\overrightarrow{\mathrm{P}_{\mathrm{f}}}-\overrightarrow{\mathrm{P}}_{\mathrm{i}}=(-0.12 \hat{\mathrm{i}}-0.24 \hat{\mathrm{i}})=(-0.36 \hat{\mathrm{i}}) \mathrm{N} \cdot \mathrm{s}$,
$\overrightarrow{\mathrm{F}}=\frac{\overrightarrow{\mathrm{J}}}{\Delta \mathrm{t}}=\left(\frac{-0.36 \hat{\mathrm{i}}}{0.01}\right) \mathrm{N}=(-36 \hat{\mathrm{i}}) \mathrm{N}$
A) $(-36 \hat{\mathrm{i}}) \mathrm{N}$
B) $(-12 \hat{i}) \mathrm{N}$
C) $(24 \hat{i}) \mathrm{N}$
D) $(-16 \hat{i}) \mathrm{N}$
E) $(-48 \hat{j}) \mathrm{N}$

Stat\# A_69_DIS_0.48_PBS_0.39_B_15_C_4_D_8_E_4_EXP_50_NUM_472
Phys101 Second Major-112 Zero Version

Q11.
A $1.0-\mathrm{kg}$ block (at rest on a horizontal frictionless surface) is connected to a spring ( $\mathrm{k}=200$ $\mathrm{N} / \mathrm{m}$ ) whose other end is fixed to a wall (see Figure 7). A $2.00-\mathrm{kg}$ block, moving at $4.00 \mathrm{~m} / \mathrm{s}$, collides with the $1.00-\mathrm{kg}$ block. If the two blocks stick together after the collision, what will be the maximum compression of the spring when the two blocks momentarily stop?


## Answer:

Consrevation of momentum $\Rightarrow m v=(m+M) V$

$$
\Rightarrow V=\frac{2 \times 4}{(2+1)} \approx 2.67 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Conservation of mechanical energy after collision

$$
\begin{aligned}
& \Rightarrow \quad \frac{1}{2}(m+M) V^{2}=\frac{1}{2} k x^{2} \\
& \Rightarrow \quad x=V \sqrt{\frac{(m+M)}{k}}=2.67 \sqrt{\frac{3}{200}}=\underline{0.33 \mathrm{~m}}
\end{aligned}
$$

A) 0.33 m
B) 0.22 m
C) 1.12 m
D) 0.13 m
E) 0.08 m

Stat\# A_35_DIS_0.50_PBS_0.41_B_22_C_10_D_17_E_16_EXP_45_NUM_472

| Phys101 | Second Major-112 | Zero Version |
| :--- | :---: | ---: |
| Posted on 28-04-12 | Tuesday, April 17, 2012 | Page: 10 |

## Q12.

Block A with mass 2.0 kg and block B with mass 3.0 kg are moving towards each other along the x -axis. The velocity of block A is $50 \mathrm{~m} / \mathrm{s}$ while block B velocity is $-20 \mathrm{~m} / \mathrm{s}$. Both the blocks undergo inelastic collision. The velocity of the center of mass of the two blocks system after the collision is:
Answer:
Consrevation of momentum of COM $\Rightarrow \quad V_{\text {COM }}$ (before collision) $=V_{\text {СОМ }}$ (After collision)

$$
\begin{aligned}
\left(m_{A}+m_{B}\right) V_{C O M} & =m_{A} v_{A}+m_{B} v_{B}=2.0 \times 50+3.0 \times(-20)= \\
& \Rightarrow V_{\text {COM }}=\frac{40}{(2+3)}=8.0 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

A) $8.0 \mathrm{~m} / \mathrm{s}$
B) 0
C) $5.0 \mathrm{~m} / \mathrm{s}$
D) $30 \mathrm{~m} / \mathrm{s}$
E) $70 \mathrm{~m} / \mathrm{s}$

Stat\# A_68_DIS_0.47_PBS_0.41_B_7_C_7_D_14_E_4_EXP_55_NUM_472

| Phys101 | Second Major-112 | Zero Version |
| :--- | :---: | ---: |
| Posted on 28-04-12 | Tuesday, April 17, 2012 | Page: 11 |

Q13.
A wheel (of mass M and radius $=0.20 \mathrm{~m}$ ) is mounted on a frictionless, horizontal axle. A light cord wrapped around the wheel supports a mass $m=0.50 \mathrm{~kg}$, as shown in the Figure 8. When released from rest the mass m falls with a downward acceleration of $5.0 \mathrm{~m} / \mathrm{s}^{2}$. What is the moment of inertia of the wheel about its axle? [Consider the cord does not slip]


## Answer:

$$
\begin{aligned}
& m a=m g-T \Rightarrow T=2.4 \mathrm{~N} \\
& \mathrm{I}=\frac{\mathrm{Tr}}{\alpha(=\mathrm{a} / \mathrm{r})}=\frac{2.4 \times 0.2}{5 / 0.2}=0.019 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

A) $0.019 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
B) $0.027 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
C) $0.016 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
D) $0.023 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
E) $0.032 \mathrm{~kg} \cdot \mathrm{~m}^{2}$

Stat\# A_31_DIS_0.53_PBS_0.44_B_18_C_9_D_22_E_19_EXP_55_NUM_472

| Phys101 | Second Major-112 | Zero Version |
| :--- | :---: | ---: |
| Posted on 28-04-12 | Tuesday, April 17, 2012 | Page: 12 |

Q14.
Figure 9 shows a uniform thin rod, with mass $\mathrm{m}_{1}=2.00 \mathrm{~kg}$ and length $\mathrm{L}=10.0 \mathrm{~cm}$, attached to a uniform solid sphere, of mass $m_{2}=3.00 \mathrm{~kg}$ and diameter 7.00 cm . Find the rotational inertia of the system about the $y$-axis.


Answer:

$$
\begin{aligned}
I_{y} & =\frac{1}{3} m_{1} L^{2}+\left[\frac{2}{5} m_{2} R^{2}+m_{2}(R)^{2}\right] \\
& =\frac{1}{3} 2\left(0.1^{2}\right)+\left[\frac{2}{5} 3 \times 0.035^{2}+3(0.035)^{2}\right]=0.0118 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

A) $0.0118 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
B) $0.0103 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
C) $0.00814 \mathrm{~kg} . \mathrm{m}^{2}$
D) $0.00980 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
E) $0.00667 \mathrm{~kg} . \mathrm{m}^{2}$

Stat\# A_26_DIS_0.31_PBS_0.32_B_17_C_27_D_11_E_18_EXP_50_NUM_472

Q15.
A wheel with a $0.10-\mathrm{m}$ radius is rotating at an angular velocity of $36 \mathrm{rev} / \mathrm{s}$. It then slows down uniformly to $15 \mathrm{rev} / \mathrm{s}$ over a 3.0 -s interval. What is the magnitude of the tangential acceleration of a point on the edge of the wheel?
Answer:

$$
\begin{aligned}
& \omega_{f}=\omega_{i}+\alpha t \Rightarrow \alpha=\frac{15-36}{3}=-7 \mathrm{rev} / \mathrm{s}^{2} \\
& a=\alpha r=|7| \times 2 \pi \times 0.1=4.4 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

A) $4.4 \mathrm{~m} / \mathrm{s}^{2}$
B) $1.5 \mathrm{~m} / \mathrm{s}^{2}$
C) $41 \mathrm{~m} / \mathrm{s}^{2}$
D) $0.70 \mathrm{~m} / \mathrm{s}^{2}$
E) $7.0 \mathrm{~m} / \mathrm{s}^{2}$

Stat\# A_49_DIS_0.58_PBS_0.45_B_9_C_6_D_21_E_14_EXP_50_NUM_472

## Q16.

A fan, initially at rest, is accelerated to angular velocity $\omega=2400 \mathrm{rev} / \mathrm{min}$ in 40 s by an electric motor. The average power of the motor during this time is $1.2 \times 10^{5} \mathrm{~W}$. What is the torque on the fan about the axis of rotation?
Answer:
$\Delta \theta=\left(\frac{\omega+\omega_{o}}{2}\right) t=\left(\frac{\frac{2400 \times 2 \pi}{60}+0}{2}\right) 40=1600 \pi$
$P=\frac{\Delta W}{\Delta t}=\tau \frac{\Delta \theta}{\Delta t} \Rightarrow \tau=\frac{P}{\left(\frac{\Delta \theta}{\Delta t}\right)}=\frac{1.2 \times 10^{5}}{\left(\frac{1600 \pi}{40}\right)}=955 \mathrm{~N} . \mathrm{m}$
A) 955 N.m
B) $100 \mathrm{~N} . \mathrm{m}$
C) $723 \mathrm{~N} . \mathrm{m}$
D) $432 \mathrm{~N} . \mathrm{m}$
E) $600 \mathrm{~N} . \mathrm{m}$

Stat\# A_21_DIS_0.29_PBS_0.30_B_11_C_19_D_33_E_15_EXP_50_NUM_472
Phys101 Second Major-112 Zero Version

Q17.
A man, holding equal mass $m$ in each hand, is standing on a frictionless disk, rotating about an axis passing through its center. Initially, the man has both hands down, as shown in Figure 10A, and the system (man + disk) rotates with an angular velocity $\omega_{i}$. Finally the man stretches his arms horizontally, as shown in Figure 10B, and the new angular velocity of the system is $\omega_{\mathrm{f}}$. The man's final rotational kinetic energy $\mathrm{K}_{\mathrm{f}}$ with respect to his initial rotational kinetic energy $\mathrm{K}_{\mathrm{i}}$ :

A) must decrease.
B) must increase.
C) must remain the same.
D) may increase or decrease depending on his initial angular velocity $\omega_{i}$.
E) may increase or decrease depending on his final angular velocity $\omega_{f}$.

Stat\# A_45_DIS_0.22_PBS_0.18_B_26_C_19_D_4_E_4_EXP_55_NUM_472

Q18.
Two equal masses $\mathrm{m}_{1}=\mathrm{m}_{2}=1.50 \mathrm{~kg}$ are joined with a massless rod with length $\mathrm{L}=50.0 \mathrm{~cm}$. The rod is free to rotate in a horizontal plane without friction about a vertical axis through its center. With the rod initially at rest, an object with mass $M=0.500 \mathrm{~kg}$ is moving horizontally towards $\mathrm{m}_{2}$ with a velocity $4.50 \mathrm{~m} / \mathrm{s}$, as shown in Figure 11 (top view). Finally the object collides with $\mathrm{m}_{2}$ and sticks to it and the rod rotates. The angular speed of the rod-masses system after the collision is:


## Answer:

Conservation of angular momentum gives:

$$
\begin{aligned}
M v(L / 2) & =I_{\text {total }} \omega_{f} \Rightarrow M v\left(\frac{L}{2}\right)=(M+2 m)\left(\frac{L}{2}\right)^{2} \omega_{f} \\
& \Rightarrow \omega_{f}=\frac{M v\left(\frac{L}{2}\right)}{(M+2 m)\left(\frac{L}{2}\right)^{2}}=\frac{0.5 \times 4.5}{(0.5+2 \times 1.5)\left(\frac{0.5}{2}\right)}=2.57 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

A) $2.57 \mathrm{rad} / \mathrm{s}$
B) $1.24 \mathrm{rad} / \mathrm{s}$
C) $0.541 \mathrm{rad} / \mathrm{s}$
D) $5.14 \mathrm{rad} / \mathrm{s}$
E) $1.41 \mathrm{rad} / \mathrm{s}$

Stat\# A_31_DIS_0.34_PBS_0.31_B_15_C_12_D_19_E_22_EXP_50_NUM_472
Phys101 Second Major-112 Zero Version

Q19.
A circular disc of mass 4.0 kg and radius 10 cm rotates about a vertical axis passing through its center. The variation of its angular momentum (L) with time ( t ) is given in the Figure 12. Find the angular acceleration of the disc at $\mathrm{t}=3.0 \mathrm{~s}$ ?


Answer:

$$
I \alpha=\frac{d L}{d t} \Rightarrow=\alpha=\frac{d L}{I d t}=\frac{1}{\frac{1}{2}\left(4.0 \times 0.1^{2}\right)} \frac{0-4}{4-2}=-100 \mathrm{rad} / \mathrm{s}^{2}
$$

A) $-100 \mathrm{rad} / \mathrm{s}^{2}$
B) $+15 \mathrm{rad} / \mathrm{s}^{2}$
C) $+50 \mathrm{rad} / \mathrm{s}^{2}$
D) $+100 \mathrm{rad} / \mathrm{s}^{2}$
E) $-5.6 \mathrm{rad} / \mathrm{s}^{2}$

Stat\# A_29_DIS_0.46_PBS_0.39_B_18_C_15_D_18_E_20_EXP_50_NUM_472

| Phys101 | Second Major-112 | Zero Version |
| :--- | :---: | ---: |
| Posted on 28-04-12 | Tuesday, April 17, 2012 | Page: 17 |

Q20.
A hoop rolls smoothly, along a horizontal surface, with constant center of mass speed $\mathrm{v}_{\text {com }}$. Its rotational kinetic energy is:
A) the same as its translational kinetic energy
B) half its translational kinetic energy
C) twice its translational kinetic energy
D) four times its translational kinetic energy
E) one-third its translational kinetic energy

Stat\# A_55_DIS_0.52_PBS_0.39_B_13_C_19_D_6_E_7_EXP_55_NUM_472

