Q1. Two persons pushed a car initially at rest at its front doors, each applying a force with magnitude $|\overrightarrow{\mathrm{F}}|=300 \mathrm{~N}$ at 25.0° to the forward direction, as shown in Figure 1. How much average power does each person requires in pushing the car 10.0 m for 10.0 seconds?
Fig\#

Answer:

$$
\begin{aligned}
& W=300 \times 10 \times \cos 25^{\circ}=2719 \\
& P=W / t=\frac{300 \times 10 \times \cos 25^{\circ}}{10}=271.8 \mathrm{~W} \approx 272 \mathrm{~W}
\end{aligned}
$$

A) 272 W
B) 145 W
C) 710 W
D) 424 W
E) 299 W

Q2. A spring has a spring constant k. If the work done in stretching the spring a distance $x=L$ from the equilibrium position is W, the work required to stretch the spring from $x_{i}=L$ to $x_{f}=2 L$ will be:
Answer:

$$
\begin{aligned}
& W=\frac{1}{2} k\left(L^{2}-0\right)=\frac{1}{2} k L^{2} \\
& W_{1}=\frac{1}{2} k\left[(2 L)^{2}-L^{2}\right]=3 W
\end{aligned}
$$

A) 3 W
B) 5 W
C) 4 W
D) 2 W
E) 1 W

Q3. A single force acts on the body causing the body to move in a straight line. A plot of the body's velocity $v(\mathrm{~m} / \mathrm{s})$ versus time $t(\mathrm{~s})$ is shown in the Fig 2 . The correct statement among the following is:
Fig\#

A) in moving from D to E , the work done by the force on the body is positive.
B) in moving from B to C no work is done on the body but the body does work on the system.
C) in moving from C to D , the work done by the force on the body is positive.
D) in moving from A to B , the work done by the force on the body is negative.
E) in moving from A to D , the work done by the force on the body is positive.

Q4. A block, of mass $m=200 \mathrm{~g}$, slides back and forth on a frictionless surface between two springs, as shown in Figure 3. The left-hand side spring has $k_{1}=130 \mathrm{~N} / \mathrm{m}$ and its maximum compression is 16 cm . The right-hand side spring has $k_{2}=280 \mathrm{~N} / \mathrm{m}$. Find the maximum compression of the right-hand side spring.
Fig\#

Answer:

$$
\begin{aligned}
\frac{1}{2} k_{1} x_{1}^{2} & =\frac{1}{2} k_{2} x_{2}^{2} \Rightarrow \frac{x_{2}^{2}}{x_{1}^{2}}=\frac{k_{1}}{k_{2}} \\
& \Rightarrow x_{2}=\sqrt{\left(\frac{k_{1}}{k_{2}}\right) x_{1}^{2}}=\sqrt{\left\{\frac{130}{280}\right\}(16)^{2}}=10.9 \mathrm{~cm} .
\end{aligned}
$$

A) 11 cm .
B) 14 cm .
C) 2.0 cm .
D) 30 cm .
E) 8.0 cm .

Q5. A block, of mass $m=1.0 \mathrm{~kg}$, initially at rest, falls from a height of $h=0.50 \mathrm{~m}$, on a vertical spring fastened to a horizontal board placed on the floor, as shown in Figure 4. If the spring constant is $k=98 \mathrm{~N} / \mathrm{m}$, the maximum compression that the spring undergoes is:
Fig\#

Answer:

$$
\begin{aligned}
m g h & =m g(-x)+\frac{1}{2} k x^{2} \\
& \Rightarrow 1.0 g(0.5)=1.0 g(-x)+\frac{1}{2}(98) x^{2} \Rightarrow 1=-2 x+10 x^{2} \\
x & =0.43 \mathrm{~m}
\end{aligned}
$$

A) 0.43 m
B) 0.17 m
C) 0.34 m
D) 0.86 m
E) 0.54 m

Q6. A single force F, of magnitude 10.0 N , accelerates an object of mass 5.00 kg for three seconds starting from rest at $t=0$. What is the work done on the object in the time interval from t $=2.00 \mathrm{sec}$ to $t=3.00 \mathrm{sec}$.
Answer:

$$
\begin{aligned}
d_{3}-d_{2} & =\frac{1}{2} a\left(3^{2}-2^{2}\right)=0+\frac{1}{2} \frac{10}{5} 5=5.00 \\
& \Rightarrow W=F d=10.0 \times 5.00=50.0 \mathrm{~J}
\end{aligned}
$$

A) 50.0 J .
B) 40.0 J .
C) 20.0 J .
D) 10.0 J .
E) 25.0 J .

Q7. A block slides back and forth in a hemispherical bowl, starting from rest at the top point A, as shown in Figure 5. The bowl is frictionless except for a 2.0 cm -wide rough flat surface at the bottom, where coefficient of kinetic friction is $\mu_{k}=0.45$. How many times does the block cross the rough region before coming to rest?
Fig\#

Answer:

$$
m g h=N \mu \mathrm{mgd} \Rightarrow N=\frac{h}{\mu d}=\frac{9}{0.45 \times 2.0}=10 \text { times }
$$

A) 10 times.
B) 14 times.
C) 13 times.
D) 3 times.
E) 4 times.

Q8. Figure 6 shows a block, of mass $m=0.50 \mathrm{~kg}$ with an initial speed of $v_{i}=10 \mathrm{~m} / \mathrm{s}$, moving down an inclined rough plane of angle 30°. The coefficient of kinetic friction between the block and the plane is $\mu=0.20$. The speed, v_{f}, of the block after it travels a distance of 10 m is:
Fig\#

Answer:

$$
\begin{aligned}
\frac{1}{2} m\left(v_{f}^{2}-10^{2}\right) & =\left(m g \sin 30^{\circ}-\mu m g \cos 30^{\circ}\right) d=m g\left(\sin 30^{\circ}-\mu \cos 30^{\circ}\right) 10 \\
& \Rightarrow v_{f}^{2}=100+64.1 \quad \Rightarrow \quad v_{f}=\sqrt{164.1}=12.8 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

A) $13 \mathrm{~m} / \mathrm{s}$
B) $24 \mathrm{~m} / \mathrm{s}$
C) $8 \mathrm{~m} / \mathrm{s}$
D) $17 \mathrm{~m} / \mathrm{s}$
E) $36 \mathrm{~m} / \mathrm{s}$

Q9. A force $F(t)$ (pointing in the +x -direction) acts on a ball with mass $\mathrm{m}=0.060 \mathrm{~kg}$ initially at rest at $t=1.00 \mathrm{~ms}$. Figure 7 shows a plot of $F(t)$ vs t. Find the speed of the ball at $t=2.50$ ms.
Fig\#

Answer:

$$
\begin{aligned}
p & =\int F d t
\end{aligned}=\frac{1}{2} F d t \quad \begin{aligned}
& \Rightarrow v_{f}
\end{aligned}=\frac{1}{2} \frac{F d t}{m}=\frac{1}{2} \frac{18000 \times(2.5-1) \times 10^{-3}}{0.06}=225 \mathrm{~m} / \mathrm{s}
$$

A) $225 \mathrm{~m} / \mathrm{s}$
B) $375 \mathrm{~m} / \mathrm{s}$
C) $400 \mathrm{~m} / \mathrm{s}$
D) $153 \mathrm{~m} / \mathrm{s}$
E) $642 \mathrm{~m} / \mathrm{s}$

Q10. A system consists of two particles m_{1} and m_{2}, where the mass of $m_{2}=0.10 \mathrm{~kg}$. At $t=0 \mathrm{~s}$, the particle m_{1} was at $X_{1}=0.0 \mathrm{~m}$ and has a velocity $\overrightarrow{\mathrm{v}}_{1}$, and the other particle m_{2} was at rest at $x_{2}=8.0 \mathrm{~m}$. At $t=0 \mathrm{~s}$, the center of mass of the system was at $x_{c o m}=2.0 \mathrm{~m}$, and has a velocity of $\vec{v}_{\text {com }}=5.0 \hat{\mathrm{i}} \mathrm{m} / \mathrm{s}$. What was the velocity $\overrightarrow{\mathrm{v}}_{1}$?

Answer:

All the velocities are in x-direction
Location of the center of mass system implies:

$$
\begin{equation*}
m_{1} x_{1}+m_{2} x_{2}=\left(m_{1}+m_{2}\right) x_{c m} \Rightarrow 0+8 \times 1=\left(m_{1}+m_{2}\right) 2 \tag{1}
\end{equation*}
$$

Velocity of the center of mass system implies

$$
\begin{equation*}
m_{1} v_{1}+m_{2} v_{2}=\left(m_{1}+m_{2}\right) v_{c m} \Rightarrow m_{1} v_{1}=\left(m_{1}+m_{2}\right) 5 \tag{2}
\end{equation*}
$$

From (1) and (2) one finds:

$$
m_{1}=0.3 \mathrm{~kg}, \quad \overrightarrow{\mathrm{v}}_{1}=6.7 \hat{\mathrm{i}} \mathrm{~m} / \mathrm{s}
$$

A) $\vec{v}_{1}=6.7 \hat{i} \mathrm{~m} / \mathrm{s}$
B) $\vec{v}_{1}=2.7 \hat{i} \mathrm{~m} / \mathrm{s}$
C) $\overrightarrow{\mathrm{v}}_{1}=1.8 \hat{\mathrm{i}} \mathrm{m} / \mathrm{s}$
D) $\vec{v}_{1}=3.4 \hat{j} \mathrm{~m} / \mathrm{s}$
E) $\overrightarrow{\mathrm{v}}_{1}=9.2 \hat{\mathrm{i}} \mathrm{m} / \mathrm{s}$

Q11. After a completely inelastic collision between two objects of equal mass m, each having an initial speed v, the two move off together with a speed $v / 3$, see Figure 8. What was the angle (20) between their initial velocities? Fig\#

Answer:

Conservation of momentum implies:

$$
\begin{aligned}
m v \cos \left(\frac{\theta}{2}\right)+m v \cos \left(\frac{\theta}{2}\right) & =2 m\left(\frac{v}{3}\right) \\
& \Rightarrow \theta=2 \cos ^{-1}\left(\frac{1}{3}\right)=141^{\circ}
\end{aligned}
$$

A) 141°
B) 134°
C) 102°
D) 163°
E) 127°

Q12. A ball of mass m_{1} makes a head on elastic collision with second ball, of mass m_{2}, initially at rest. If m_{1} rebounds in the opposite direction with a speed equal to one-fourth its original speed, what is the mass m_{2} ?

Answer:

Conservation of momentum implies:

$$
\begin{aligned}
m_{1} v_{1}+0 & =m_{1}\left(\frac{-v_{1}}{4}\right)+m_{2}\left(\frac{3 v_{1}}{4}\right) \\
& \Rightarrow m_{1}\left(1+\frac{1}{4}\right)=\frac{3}{4} m_{2} \Rightarrow m_{2}=\frac{5}{3} m_{1}
\end{aligned}
$$

A) $\frac{5}{3} m_{1}$
B) $\frac{1}{2} m_{1}$
C) $\frac{1}{3} m_{1}$
D) $\frac{3}{4} m_{1}$
E) $\frac{7}{2} m_{1}$

Q13. A uniform disk of 1.0 m radius is rotating about its symmetry axis with a constant angular speed of $2.0 \mathrm{rad} / \mathrm{s}$. What are the magnitude of the tangential acceleration a_{t} and centripetal acceleration a_{r} of a point on the rim of the disk?

Answer:

$$
\begin{aligned}
& \omega=2 \mathrm{rad} / \mathrm{s}, \mathrm{r}=1 \mathrm{~m} \\
& a_{r}=\frac{v^{2}}{2}=r \omega^{2}=1 \times 2^{2}=4 \mathrm{~m} / \mathrm{s}^{2} \\
& a_{t}=\frac{d \omega}{d t}=0
\end{aligned}
$$

A) $a_{t}=0.0 \mathrm{~m} / \mathrm{s}^{2}, a_{r}=4.0 \mathrm{~m} / \mathrm{s}^{2}$
B) $a_{t}=1.0 \mathrm{~m} / \mathrm{s}^{2}, a_{r}=2.0 \mathrm{~m} / \mathrm{s}^{2}$
C) $a_{t}=0.0 \mathrm{~m} / \mathrm{s}^{2}, a_{r}=1.0 \mathrm{~m} / \mathrm{s}^{2}$
D) $a_{t}=2.0 \mathrm{~m} / \mathrm{s}^{2}, a_{r}=4.0 \mathrm{~m} / \mathrm{s}^{2}$
E) $a_{t}=4.0 \mathrm{~m} / \mathrm{s}^{2}, a_{r}=0.0 \mathrm{~m} / \mathrm{s}^{2}$

Q14. A disk, subjected to a constant net torque, rotates around a fixed axis starting from rest. The ratio of work done by the torque during the $(0-5.0 \mathrm{~s})$ interval to the work done during the (5.0 s -10 s) interval is:
Answer:

$$
\begin{aligned}
& W=\tau \Delta \theta \Rightarrow \frac{W_{1}}{W_{2}}=\frac{\Delta \theta_{1}}{\Delta \theta_{2}} \\
& \Delta \theta_{1}=0+1 / 2 \alpha(5)^{2} \text { and } \Delta \theta_{1}+\Delta \theta_{2}=0+1 / 2 \alpha(10)^{2} \\
& \frac{W_{1}}{W_{2}}=\frac{\Delta \theta_{1}}{\Delta \theta_{2}}=\frac{25}{75}=\frac{1}{3}
\end{aligned}
$$

A) $1 / 3$
B) $1 / 2$
C) 3
D) 2
E) 4

Q15. A uniform disk, a thin hoop, and a uniform solid sphere, all with the same mass and same outer radius, are each free to rotate about a fixed axis through their centers. Identical forces are simultaneously applied to the rims of the objects, as shown in Figure 9. If the objects start from rest, rank the objects according to their angular speeds achieved after a given time ($t \mathrm{sec}$), least

to greatest.

Fig\#

A) hoop, disk, sphere
B) All tie.
C) hoop, sphere, disk
D) disk, hoop, sphere
E) sphere, disk, hoop

Q16. An engine applies a constant torque of $5.00 \mathrm{~N} \cdot \mathrm{~m}$ on a wheel, with moment of inertia $\mathrm{I}_{\mathrm{o}}=$ $10.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}$, to rotate it about its symmetry axis O . How much power is required by the engine to rotate the wheel at $t=5.00 \mathrm{~s}$, if the wheel starts from rest?
Answer:

$$
P_{a v}=\vec{\tau} \cdot \vec{\omega} .=\tau \alpha t=\frac{\tau^{2} t}{I}=\frac{5^{2} \times 5}{10}=12.5 \mathrm{~W} .
$$

A) 12.5 W
B) 3.06 W
C) 6.20 W
D) 2.53 W
E) 1.62 W

Q17. A single force \mathbf{F} acts on a particle P. Rank each of the orientations of the force shown in Figure 10 according to the magnitude of the time rate of change of the particle's angular momentum about the point O, least to greatest.
Fig\#

A) 1 and 2 tie, then 4,3
B) $1,2,3,4$
C) 1 and 2 tie, then 3,4
D) 1 and 2 tie, then 3 and 4 tie
E) All are the same

Q18. A disk with radius of 3.0 m and a moment of inertia of $8000 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ is rotating about its central axis without friction with an angular velocity of $1.2 \mathrm{rad} / \mathrm{s}$. Initially a man with mass \mathbf{m} is moving with a velocity of $5.0 \mathrm{~m} / \mathrm{s}$, on a line tangent to the edge of the disk, as shown in Figure 11. The man jumps onto the edge of the disk. The final angular velocity of the disk and the man is $1.24 \mathrm{rad} / \mathrm{s}$. The mass of the man \mathbf{m} is:
Fig\#

Answer:

Conservation of angular momentum implies:

$$
\begin{aligned}
I_{1} \omega_{1}+m v r & =I_{1} \omega_{1}{ }^{\prime}+m r^{2} \omega \\
& \Rightarrow I_{1}(\underbrace{1.2-1.24}_{-0.04})=m_{1}\left(r^{2} \omega-v r\right)=m(3)(3 \times 1.24-5)=3 m(-1.28) \\
& \Rightarrow m=\frac{8000 \times 0.04}{3 \times 1.28}=83.3 \mathrm{~kg}
\end{aligned}
$$

A) 83 kg
B) 61 kg
C) 75 kg
D) 53 kg
E) 94 kg

Q19. A disk starts from rest and rotates with a constant angular acceleration. If the angular velocity is $\omega \mathrm{rad} / \mathrm{s}$ at the end of the first two revolutions, then at the end of the first eight revolutions, the angular velocity will be:
Answer:

$$
\begin{aligned}
& \omega^{2}=\omega_{0}^{2}+2 \alpha \Delta \theta \\
& \omega_{2}^{2}=0+2 \alpha(2 \times 2 \pi) \text { and } \omega_{8}^{2}=0+2 \alpha(8 \times 2 \pi) \\
& \frac{\omega_{2}^{2}}{\omega_{8}^{2}}=\frac{2}{8} \Rightarrow \frac{\omega_{2}}{\omega_{8}}=\frac{1}{2} \Rightarrow \omega_{8}=2 \omega_{2}=2 \omega \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

A) $2 \omega \mathrm{rad} / \mathrm{s}$
B) $\sqrt{2} \omega \mathrm{rad} / \mathrm{s}$
C) $3 \omega \mathrm{rad} / \mathrm{s}$
D) $4 \omega \mathrm{rad} / \mathrm{s}$
E) $5 \omega \mathrm{rad} / \mathrm{s}$

Q20. A hoop rolls without sliding along a horizontal floor. The ratio of its translational kinetic energy to its rotational kinetic energy (about an axis through its center of mass) is:
Answer:

$$
\begin{aligned}
K_{r} & =\frac{1}{2} I \omega^{2}, K_{t}=\frac{1}{2} m v^{2}=\frac{1}{2} m r^{2} \frac{v^{2}}{r^{2}}=\frac{1}{2} I \omega^{2} \\
& \Rightarrow \frac{K_{t}}{K_{r}}=1 .
\end{aligned}
$$

A) 1
B) 2
C) 3
D) $1 / 2$
E) $1 / 3$

