Phys101	Second Major-141	Zero Version
Coordinator: Dr. A. Naqvi	Monday, November 03, 2014	Page: 1

Q1.
A ball with a weight of 4.5 N is thrown at an angle of 30° above the horizontal with an initial speed of $10 \mathrm{~m} / \mathrm{s}$. Neglecting air resistance, at its highest point, the net force on the ball is:
A) 4.5 N , vertically downward
B) Zero
C) $1.5 \mathrm{~N}, 30^{\circ}$ below horizontal
D) 9.8 N , vertically downward
E) $9.8 \mathrm{~N}, 30^{\circ}$ below horizontal

Q2.

A ball is suspended by a string from the ceiling of a car. The car moves horizontally with a constant acceleration of $2.5 \mathrm{~m} / \mathrm{s}^{2}$ with respect to the ground. The ball is at rest with respect to the car. What angle does the string make with the vertical?
A) 14°
B) Zero
C) 25°
D) 45°
E) 90°

Q3.
A 5.0 kg block is lowered with a downward acceleration of $2.8 \mathrm{~m} / \mathrm{s}^{2}$ by means of a rope. Find the force exerted by the block on the rope.
A) 35 N , downward
B) 14 N , downward
C) 35 N , upward
D) 14 N , upward
E) 49 N , upward

Q4.
Two blocks of masses $\mathrm{m}_{1}=2.0 \mathrm{~kg}$ and $\mathrm{m}_{2}=1.0 \mathrm{~kg}$ are in contact with each other on a frictionless surface as shown in Figure 1. A horizontal force \vec{F} of magnitude 3.0 N is applied to the block of mass m_{2} as shown. Find the magnitude of the force that m_{1} exerts on m_{2}.

A) 2.0 N
B) 9.8 N
C) 1.0 N
D) 6.0 N
E) 3.0 N

Q5.

A pickup truck carries a box on its back as shown in Figure 2. The truck starts from rest. When the truck attains an acceleration of $2.00 \mathrm{~m} / \mathrm{s}^{2}$, the box starts to slip towards the end of the truck. The coefficient of friction between the box and the truck's back surface is ?

A) $\mu_{\mathrm{s}}=0.20$
B) $\mu_{\mathrm{s}}=0.15$
C) $\mu_{\mathrm{s}}=0.37$
D) $\mu_{\mathrm{s}}=0.11$
E) $\mu_{\mathrm{s}}=0.30$

Q6.

A block is sliding down a rough inclined plane that makes an angle of 30° with the horizontal. When a horizontal force \vec{F} of magnitude 10 N is applied to the block, as shown in Figure 3, the block slides down at a constant speed. If the coefficient of kinetic friction between the block and the inclined plane is 0.30 , find the mass of the block.

A) 4.3 kg
B) 1.5 kg
C) 4.7 kg
D) 2.0 kg
E) 3.9 kg

Q7.
A car of mass 500 kg can go around a banked circular road of radius 60 m at the maximum speed of $72 \mathrm{~km} / \mathrm{h}$ without slipping. Find the normal force on the car from the banked surface (Ignore the friction force from the road).
A) 5.9 kN
B) 6.4 kN
C) 39 kN
D) 1.9 kN
E) 79 kN

Phys101	Second Major-141	Zero Version
Coordinator: Dr. A. Naqvi	Monday, November 03, 2014	Page: 3

Q8.
A block is dropped from a high tower and is falling freely under the influence of gravity. Which one of the following statements is true? (Ignore air resistance).
A) The kinetic energy increases by equal amounts over equal distances.
B) As the block falls, the net work done by all of the forces acting on the block is zero joules.
C) The kinetic energy of the block increases by equal amounts in equal times.
D) The potential energy of the block decreases by equal amounts in equal times.
E) The total energy of the block increases by equal amounts over equal distances.

Q9.
A massless spring hangs from the ceiling. How much does its potential energy increase if a 30 kg mass is attached to it? The spring constant is $4800 \mathrm{~N} / \mathrm{m}$.
A) 9.0 J
B) 1.9 J
C) 5.3 J
D) 12 J
E) 15 J

Q10.
A 10 kg block is sent up a frictionless ramp along which an x axis extends upward. Figure 4 gives the kinetic energy of the block as a function of position x ; the scale of the figure's vertical axis is set by $\mathrm{K}_{\mathrm{s}}=80 \mathrm{~J}$. What is the angle of the inclination of the ramp with respect to the horizontal surface?

A) 24°
B) 31°
C) 19°
D) 33°
E) 11°

Q11.
Starting from rest, an elevator with a mass of $1.00 \times 10^{3} \mathrm{~kg}$ moves 100 m vertically upward in 50.0 s . At what average rate does the force from the cable do work on the elevator?
A) 19.8 kW
B) 11.1 kW
C) 29.7 kW
D) 31.3 kW
E) 15.6 kW

Q12.

Two balls are launched from the same spring-loaded cannon with the spring compressed the same distance each time. Ball A has a 40 kg mass and ball B has a 60 kg mass. The relation between their speeds at the instant of launch is:
A) $v_{A}=\sqrt{(3 / 2)} v_{B}$
B) $v_{A}=v_{B}$
C) $v_{A}=(3 / 2) v_{B}$
D) $v_{B}=\sqrt{(3 / 2)} v_{A}$
E) $v_{B}=(3 / 2) v_{A}$

Q13.

In a simple pendulum a 2.00 kg mass is attached to a 2.00 m long massless string. The mass has a speed of $3.00 \mathrm{~m} / \mathrm{s}$ when the string makes an angle of 30.0° with the vertical. What is the speed of the mass when the string makes an angle of 45° with the vertical?
A) $1.66 \mathrm{~m} / \mathrm{s}$
B) $2.64 \mathrm{~m} / \mathrm{s}$
C) $5.22 \mathrm{~m} / \mathrm{s}$
D) $26.6 \mathrm{~m} / \mathrm{s}$
E) $0.720 \mathrm{~m} / \mathrm{s}$

Q14.

Figure 5 shows a 10.0 kg stone resting on a spring. The spring is compressed 10.0 cm by the stone. The stone is further pushed down an additional 40.0 cm and then released. The stone rises vertically to a maximum height of 1.00 m from its release point. What is the magnitude of the work done by non-conservative forces (air resistance) on the stone during its flight to the maximum height?

A) 24.5 J
B) 14.7 J
C) 34.9 J
D) 9.25 J
E) 41.5 J

Q15.

Phys101	Second Major-141	Zero Version
Coordinator: Dr. A. Naqvi	Monday, November 03, 2014	Page: 5

Starting from rest, a 2.00 kg block slides downward inside a frictionless circular hoop of radius $R=0.50 \mathrm{~m}$, as shown in Figure 6. What is the magnitude of the normal force exerted on the block by the hoop when the block reaches the bottom of the hoop?

A) 58.8 N
B) 88.5 N
C) 30.1 N
D) 72.4 N
E) 31.7 N

