
Phys101	Second Major-191	Zero Version
	Monday, November 18, 2019	Page: 1

Q1.

Figure 1 shows a graph of the acceleration versus the displacement of a particle moving in one dimension. The particle is at rest at x = 0. What is the coordinate x at which the particle has the maximum kinetic energy?

E) 8

Q2.

What is the work done by the force $\vec{F} = (2.0\hat{i} + 4.0\hat{j} + 9.0\hat{k})$ N that acts on a 3.0 kg object and moves from an initial position $\vec{r}_1 = (-4.1\hat{i} + 3.3\hat{j} + 5.2\hat{k})$ m to a final position $\vec{r}_2 = (2.7\hat{i} - 2.9\hat{j} + 5.5\hat{k})$ m.

- A) 8.5 J
 B) 12 J
 C) 5.2 J
 D) 12 J
- E) 4.7 J

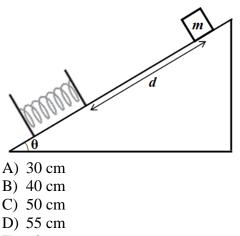
Q3.

A 25 kg block, which is initially at rest, is pulled across a horizontal rough surface (coefficient of kinetic friction $\mu_k = 0.3$) by a force of 80 N directed 30° above the horizontal. What is the final speed of the block after it has moved a distance d = 10 m?

A) 2.5 m/s

B) 1.8 m/s

- C) 3.3 m/s
- D) 4.0 m/s
- E) 3.8 m/s


Q4.

A worker uses a motor to raise a 2700-kg block a vertical distance of 3.2 m. If the task is to be achieved in 5.0 minutes, what is the minimum (average) power requirement for the motor?

- A) 280 W
- B) 320 W
- C) 440 W
- D) 510 W
- E) 560 W

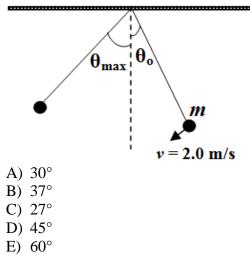
Q5.

A block of mass m = 3.5 kg slides from rest down a frictionless incline of angle $\theta = 30^{\circ}$. See **Figure** 2. After sliding a distance *d* along the incline, it compresses a relaxed spring of spring constant 430 N/m. The block monetarily stops after compressing the spring by 20 cm. What is the distance *d*?

E) 60 cm

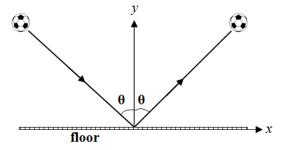
Q6.

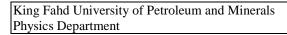
A box can slide along a track with elevated curved ends and a flat central part, as shown in **Figure 3**. The flat part has length 2*L*. The curved portions of the track are frictionless, but for the flat part the coefficient of kinetic friction is $\mu_k = 0.25$. The box is released from rest at point A on the left curved portion, which is at a height *L*. Find the maximum height that the box will reach at the right curved portion.


Phys101	Second Major-191	Zero Version
	Monday, November 18, 2019	Page: 3
¥ 	- 2L	
A) <i>L</i> /2		
B) L		
C) 3L/2		

D) 2L/3

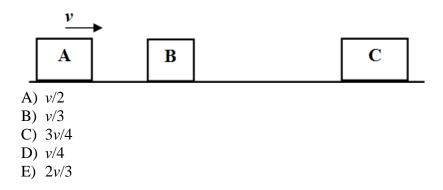
E) *L*/3


Q7.


A pendulum consists of a small mass m = 0.15 kg attached to a massless rod with length 2.0 m. At $\theta_0 = 15^\circ$, the mass has a speed of 2.0 m/s (see **Figure 4**). Find the maximum angle θ_{max} that the pendulum will make with the vertical. (Ignore air resistance)

Q8.

A ball of mass 0.15 kg and with initial speed 2.0 m/s, collides elastically with the floor at $\theta = 30^{\circ}$ with the vertical and bounces back with the same speed and the same angle (see **Figure 5**). What is the impulse from the ball on the floor?


c-20-n-20-s-0-e-0-fg-1-fo-1

Phys101	Second Major-191	Zero Version		
	Monday, November 18, 2019	Page: 4		
A) 0.52 N.s along th	ne negative y-axis			
B) 0.52 N.s along the positive y-axis				
C) 0.30 N.s along the positive x-axis				
D) 0.30 N.s along th	ne negative x-axis			

E) 0

Q9.

Figure 6, shows three blocks A, B, and C, of masses 3M, M and 2M respectively, on a frictionless surface. Blocks B and C are initially at rest. Block A is initially moving towards block B at a speed v and undergoes an elastic collision with block B. Block B moves to the right and undergoes a completely inelastic collision with block C. What is the speed of block C immediately after the collision?

Q10.

Object A of mass *m* is moving along the *x*-axis with an initial speed of 5.0 m/s. It then collides with another object B of mass 4m, which is initially at rest. After the collision, object A moves with a speed of 2.5 m/s in a direction 60° to its original direction of motion. If the collision is inelastic, determine the direction of travel of object B with respect to the *x*-axis.

A) 30°

- **B**) 37°
- C) 60°
- D) 45°
- E) 53°

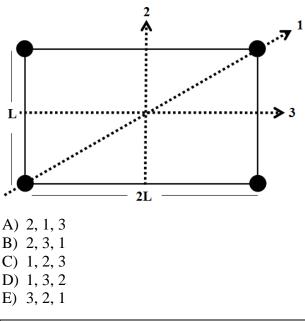
King Fahd University of Petroleum and Minerals Physics Department

c-20-n-20-s-0-e-0-fg-1-fo-1

Q11.

A stationary block lying on a frictionless floor explodes into three pieces that slide across the floor. Which one of the following quantities **will NOT be zero** after the explosion?

- A) The total kinetic energy
- B) The velocity of the center of mass
- C) The acceleration of the center of mass
- D) The total linear momentum
- E) The displacement of the center of mass


Q12.

A car and a truck, initially at rest at a traffic light, start accelerating in the same direction when the traffic light turns green. The acceleration of the car is 15.0 m/s^2 and the acceleration of the truck is 5.0 m/s^2 . If the mass of the truck is three times the mass of the car, then what is the magnitude of the velocity of their center of mass after 4.0 s?

- A) 30 m/s
- B) 20 m/s
- C) 40 m/s
- D) 25 m/s
- E) 35 m/s

Q13.

Four equal masses are arranged at the corners of a rectangle of width L and length 2L. The masses are connected by rigid, massless rods. The system can rotate about any one of the axes 1, 2, or 3 shown in **Figure 7**. Rank the axes according to the value of the rotational inertia about them, **greatest to least**.

Phys101	Second Major-191	Zero Version
	Monday, November 18, 2019	Page: 6

Q14.

A rotating ring has a radius R = 22 m. The angular position of a reference line on the ring is given by: $\theta(t) = 1.5t^3 - 4.0t^2$. Find the ratio of the magnitude of the tangential acceleration to the magnitude of the radial acceleration at t = 2.0 s for a point on the ring of the ring.

A) 2.5

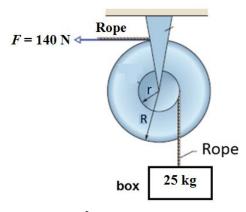
B) 3.0

C) 4.0

D) 5.5E) 4.4

L) +.-

Q15.


A wheel is initially rotating at 10 rad/s and has a constant angular acceleration. After 9.0 s, it has rotated through 24 revolutions. What is the magnitude of its angular acceleration?

A) 1.5 rad/s²
B) 3.5 rad/s²
C) 4.4 rad/s²
D) 5.3 rad/s²

E) 5.9 rad/s^2

Q16.

A yo-yo shaped device mounted on a horizontal frictionless axis is used to lift a 25 kg box as shown in **Figure 8**. The box is suspended by a rope wrapped around the axle whose radius r is 0.30 m. The outer radius R of the device is 0.6 m. When a constant horizontal force F of magnitude 140 N is applied to the rope at the outer radius of the device, the box has an upward acceleration of magnitude 0.80 m/s². What is the rotational inertia of the device about its axis of rotation?

A) 1.7 kg m^2 B) 2.6 kg m^2

B) 2.6 kg m^2

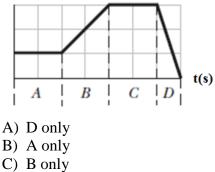
- C) 4.2 kg m²
 D) 5.0 kg m²
- E) 3.2 kg m^2

Q17.

A 0.50-kg object moves in a horizontal circular track with radius of 2.0 m. An external force of 4.0 N always tangent to the track causes the object to speed up as it goes around. What is the work done by the external force as the object makes one revolution?

- A) 50 J
- B) 60 J
- C) 70 J
- D) 80 J
- E) 0 J

Q18.

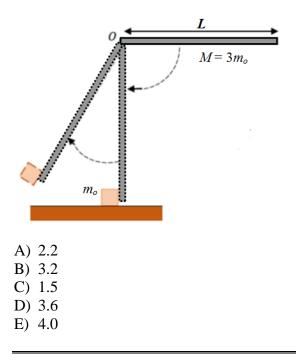

A uniform solid sphere rolls smoothly without slipping with center of mass velocity of 2.5 m/s along a horizontal floor, then up a ramp inclined at 20° . What is the maximum distance traveled by the center of mass of the sphere along the ramp?

- A) 1.3 m
- B) 1.0 m
- C) 1.7 m
- D) 2.1 m
- E) 2.4 m

Q19.

Figure 9 is a plot of the angular momentum of a wheel versus time. At which time interval (A, B, C or D) is the magnitude of the torque acting on the wheel maximum?

 $L (kg m^2/s)$



- D) C only
- E) A and C

Phys101	Second Major-191	Zero Version
	Monday, November 18, 2019	Page: 8

Q20.

The uniform thin rod in **Figure 10** (mass $M = 3m_o$ and length L = 1.5 m) can rotate about a vertical axis through one end (*O*). Initially, it is held horizontally. When released, it swings through its lowest position and collides with a stationary block of mass m_o that sticks to the end of the rod. What is the angular speed (in rad/s) of the rod-block system immediately after the collision? Take $m_o = 0.50$ kg. (Ignore all forms of frictions)

