Q1.
Figure 1 gives the x component F_{x} of a single force that acts on a particle. If the particle begins at rest at $x=0$, what is its coordinate when it has its greatest kinetic energy?

A) 3 m
B) 1 m
C) 6 m
D) 5 m
E) 8 m

Q2.
A 100 kg block is pulled at a constant speed of $5.0 \mathrm{~m} / \mathrm{s}$ across a horizontal floor by an applied force of 122 N directed 37° above the horizontal. What is the rate at which the force does work on the block?
A) $4.9 \times 10^{2} \mathrm{~W}$
B) $3.7 \times 10^{2} \mathrm{~W}$
C) $5.6 \times 10^{2} \mathrm{~W}$
D) $1.8 \times 10^{3} \mathrm{~W}$
E) $2.4 \times 10^{1} \mathrm{~W}$

Q3.
A 0.80 kg block is dropped onto a relaxed vertical spring that has a spring constant of $k=250$ N / m as shown in Figure 2. The block compresses the spring 0.12 m before momentarily stopping. Find the maximum speed of the block just before it hits the spring. (Assume that friction and air resistance are negligible.)

A) $1.5 \mathrm{~m} / \mathrm{s}$
B) $2.1 \mathrm{~m} / \mathrm{s}$
C) $3.2 \mathrm{~m} / \mathrm{s}$
D) $4.6 \mathrm{~m} / \mathrm{s}$
E) $5.0 \mathrm{~m} / \mathrm{s}$

Q4.
A single force $\overrightarrow{\boldsymbol{F}}$ acts on a $0.40-\mathrm{kg}$ particle and changes its velocity from $\overrightarrow{\mathbf{V}}_{i}=(4.0 \hat{\mathbf{i}}-3.0 \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}$ at time t_{i} to $\overrightarrow{\mathbf{v}}_{f}=(5.0 \hat{\mathbf{i}}+3.0 \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}$ at time t_{f}. What is the work done by $\overrightarrow{\boldsymbol{F}}$ on the particle during this interval of time?
A) 1.8 J
B) 0.14 J
C) 1.2 J
D) zero
E) 5.0 J

Phys101	Second Major-172	Zero Version
Coordinator: Dr. S. Kunwar	Monday, April 09, 2018	Page: 3

Q5.

At time $t=0$, a 1.0 kg ball is thrown from the top of 100 m tall tower with initial velocity $\overrightarrow{\mathbf{v}}_{0}=(16 \hat{\mathbf{i}}+24 \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}$. At what height from the ground will the kinetic energy of the ball be three times its initial kinetic energy? (Ignore the air resistance)?
A) 15 m
B) 10 m
C) 20 m
D) 25 m
E) 40 m

Q6.
A block with mass $m=2.00 \mathrm{~kg}$ is placed against a spring on a rough incline with angle $\theta=30.0^{\circ}$ and coefficient of kinetic friction $\mu_{k}=0.215$ as shown in Figure 3 (The block is not attached to the spring). The spring, which is compressed 20.0 cm from its relaxed position, is then released from rest and the block travels distance $I=1.20 \mathrm{~m}$ from the release point on the incline before coming to rest. Find the value of spring constant k of the spring.

A) $807 \mathrm{~N} / \mathrm{m}$
B) $578 \mathrm{~N} / \mathrm{m}$
C) $256 \mathrm{~N} / \mathrm{m}$
D) $980 \mathrm{~N} / \mathrm{m}$
E) $663 \mathrm{~N} / \mathrm{m}$

Phys101	Second Major-172	Zero Version
Coordinator: Dr. S. Kunwar	Monday, April 09, 2018	Page: 4

Q7.
If only conservative forces are acting on a body then the work done by conservative forces
A) does not change the total mechanical energy.
B) does not change the potential energy.
C) does not change the kinetic energy.
D) is always equal to zero.
E) is always negative.

Q8.
An 18-kg object is released from rest and moves vertically downward from a height of 80 m above the ground. It reaches the ground with a speed of $15 \mathrm{~m} / \mathrm{s}$. How much work was done by the nonconservative forces on the object?
A) -12 kJ
B) -16 kJ
C) +12 kJ
D) +16 kJ
E) -14 kJ

Q9.
A stone is dropped at time $t=0$. A second stone, with twice the mass of the first, is dropped from the same point at $t=0.10 \mathrm{~s}$. How far below the release point is the center of mass of the two stones at t $=0.30 \mathrm{~s}$? Ignore air resistance. (Both stones are dropped from rest and none of the stones has reached the ground.)
A) 0.28 m
B) 0.12 m
C) 0.45 m
D) 0.31 m
E) 0.63 m

Phys101	Second Major-172	Zero Version
Coordinator: Dr. S. Kunwar	Monday, April 09,2018	Page:5

Q10.
A 2.4-kg ball that is falling vertically downward hits a horizontal floor with a speed of $2.5 \mathrm{~m} / \mathrm{s}$ and rebounds with a speed of $1.5 \mathrm{~m} / \mathrm{s}$. What is the magnitude of the impulse exerted on the ball by the floor?
A) $9.6 \mathrm{~N} . \mathrm{s}$
B) $2.4 \mathrm{~N} . \mathrm{s}$
C) $3.5 \mathrm{~N} . \mathrm{s}$
D) $6.7 \mathrm{~N} . \mathrm{s}$
E) $7.1 \mathrm{~N} . \mathrm{s}$

Q11.
A cart, with mass 340 g and moving on a horizontal frictionless surface with an initial speed of $1.2 \mathrm{~m} / \mathrm{s}$, undergoes an elastic collision with an initially stationary cart of unknown mass. After the collision, the first cart continues in its original direction at $0.66 \mathrm{~m} / \mathrm{s}$. What is the mass of the second cart?
A) 0.099 kg
B) 0.061 kg
C) 0.036 kg
D) 0.018 kg
E) 0.075 kg

Phys101	Second Major-172	Zero Version
Coordinator: Dr. S. Kunwar	Monday, April 09,2018	Page: 6

Q12.
A 4.0 kg mass, moving with constant speed v, explodes at point O into two equal parts, as shown in Figure 4. The first part moves with speed $3.0 \mathrm{~m} / \mathrm{s}$ due north, and the second part moves with speed $5.0 \mathrm{~m} / \mathrm{s}, 30^{\circ}$ north of east. Find the value of v.

A) $3.5 \mathrm{~m} / \mathrm{s}$
B) $8.0 \mathrm{~m} / \mathrm{s}$
C) $5.0 \mathrm{~m} / \mathrm{s}$
D) $2.0 \mathrm{~m} / \mathrm{s}$
E) $4.5 \mathrm{~m} / \mathrm{s}$

Q13.
A rotating wheel requires 3.00 s to rotate through 37.0 revolutions. Its angular speed at the end of the 3.00 s interval is $98.0 \mathrm{rad} / \mathrm{s}$. What is the constant angular acceleration of the wheel?
A) $13.7 \mathrm{rad} / \mathrm{s}^{2}$
B) $10.5 \mathrm{rad} / \mathrm{s}^{2}$
C) $11.2 \mathrm{rad} / \mathrm{s}^{2}$
D) $17.1 \mathrm{rad} / \mathrm{s}^{2}$
E) $29.3 \mathrm{rad} / \mathrm{s}^{2}$

Phys101	Second Major-172	Zero Version
Coordinator: Dr. S. Kunwar	Monday, April 09, 2018	Page: 7

Q14.
Find the net torque on the wheel in Figure 5 about the axle through O if $a=10.0 \mathrm{~cm}$ and $\quad b=25.0$ cm.

A) $-3.55 \mathrm{~N} . \mathrm{m}$
B) $-1.27 \mathrm{~N} . \mathrm{m}$
C) $+1.27 \mathrm{~N} . \mathrm{m}$
D) +3.55 N.m
E) $-7.16 \mathrm{~N} . \mathrm{m}$

Q15.
A 32.0 kg wheel, essentially a thin hoop with radius 1.20 m , is rotating about its axis at $280 \mathrm{rev} / \mathrm{min}$. It must be brought to a stop in 15.0 s . What is the magnitude of the required average power to stop it?
A) $1.32 \times 10^{3} \mathrm{~W}$
B) $2.53 \times 10^{3} \mathrm{~W}$
C) $6.14 \times 10^{3} \mathrm{~W}$
D) $3.51 \times 10^{3} \mathrm{~W}$
E) $4.96 \times 10^{3} \mathrm{~W}$

Phys101	Second Major-172	Zero Version
Coordinator: Dr. S. Kunwar	Monday, April 09, 2018	Page: 8

Q16.
A mass ($M_{1}=5.0 \mathrm{~kg}$) is connected by a massless cord to another mass ($M_{2}=4.0 \mathrm{~kg}$) which slides on a horizontal frictionless surface, as shown in Figure 6. The pulley (radius $=0.20 \mathrm{~m}$) rotates about a frictionless axle. If the acceleration of M_{2} is $3.5 \mathrm{~m} / \mathrm{s}^{2}$, what is the rotational inertia of the pulley?

A) $0.20 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
B) $0.50 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
C) $0.10 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
D) $0.35 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
E) $0.75 \mathrm{~kg} \cdot \mathrm{~m}^{2}$

Q17.
A uniform solid sphere of radius 0.10 m started to roll up without slipping with a center of mass speed of $2.0 \mathrm{~m} / \mathrm{s}$ from the bottom of a ramp (point A in Figure 7) that is inclined at an angle $\theta=10^{\circ}$. Find the maximum distance (d) travelled by the ball before it comes to rest.

A
A) 1.6 m
B) 2.8 m
C) 3.9 m
D) 4.1 m
E) 6.3 m

Phys101	Second Major-172	Zero Version
Coordinator: Dr. S. Kunwar	Monday, April 09,2018	Page: 9

Q18.
Figure 8 gives the angular momentum magnitude L of a wheel versus time t. Rank the four lettered time intervals according to the magnitude of the torque acting on the wheel, greatest first.

A) D, B, (A and C) tie
B) B, (A and C) tie, D
C) D, (A and C) tie, B
D) $(A$ and $C)$ tie, B, D
E) B, D, (A and C) tie

Q19.
A 2.0 kg particle-like object moves in an $x y$-plane with velocity components $\boldsymbol{v}_{x}=20 \mathrm{~m} / \mathrm{s}$ and $\boldsymbol{v}_{\boldsymbol{y}}=60$ m / s as it passes through the point with (x, y) coordinates of $(3.0,-4.0) \mathrm{m}$. At this time, what are the magnitude (in SI units) and direction of its angular momentum relative to the point located at (-2.0 , -2.0) m?
A) $+680 \hat{\mathbf{k}}$
B) $-680 \hat{\mathbf{k}}$
C) Zero
D) $+540 \hat{\mathbf{k}}$
E) $-540 \hat{\mathbf{k}}$

Phys101	Second Major-172	Zero Version
Coordinator: Dr. S. Kunwar	Monday, April 09,2018	Page 10

Q20.
A 50 g bullet is fired horizontally at one end of a 0.60 m long uniform rod of mass 0.50 kg , which is originally at rest and is pivoted at another end at point A in a vertical plane, as shown in Figure 9. If the angular speed of the system (bullet + rod assumed to stick together) about A just after impact is $4.5 \mathrm{rad} / \mathrm{s}$, what is the bullet's speed just before impact?

A) $12 \mathrm{~m} / \mathrm{s}$
B) $10 \mathrm{~m} / \mathrm{s}$
C) $14 \mathrm{~m} / \mathrm{s}$
D) $17 \mathrm{~m} / \mathrm{s}$
E) $20 \mathrm{~m} / \mathrm{s}$

