Q1.
The uniform solid block in Figure 1 has mass 0.172 kg and edge lengths $a=3.5 \mathrm{~cm}$, $b=8.4 \mathrm{~cm}$, and $c=1.4 \mathrm{~cm}$. Calculate its rotational inertia about an axis through one corner and perpendicular to the large faces.

A) $4.8 \times 10^{-4} \mathrm{~kg} . \mathrm{m}^{2}$
B) $5.7 \times 10^{-4} \mathrm{~kg} . \mathrm{m}^{2}$
C) $7.7 \times 10^{-1} \mathrm{~kg} . \mathrm{m}^{2}$
D) $8.7 \times 10^{+1} \mathrm{~kg} . \mathrm{m}^{2}$
E) $9.7 \times 10^{-4} \mathrm{~kg} . \mathrm{m}^{2}$

Q2.
A man pushes a 500 kg block along the x axis by a constant force $\vec{F}=(100 N) \hat{i}-(200 N) \hat{j}$. Find the power required to maintain a speed of $5.00 \mathrm{~m} / \mathrm{s}$.
A) 500 W
B) 2500 W
C) 1000 W
D) 750 W
E) 300 W

Q3.
Figure 2 shows four groups of three or four identical particles that move parallel to either the x axis or the y axis, at identical speeds. Rank the groups according to center-of-mass speed, greatest first.

A) d, c, a, b
B) d, a, b, c
C) a, b, c, d
D) d, c, b, a
E) c, d, a, b

Q4.
A block is sliding down on a rough inclined plane. A man applies a force to reduce the acceleration of the block. Let W_{f} be the work done by the friction force, W_{m} the work done by the man, and W_{g} the work done by the gravitational force. While the block is sliding down, which of the following is TRUE?
A) $\mathrm{W}_{\mathrm{f}}<0, \mathrm{~W}_{\mathrm{m}}<0, \mathrm{~W}_{\mathrm{g}}>0$
B) $\mathrm{W}_{\mathrm{f}}<0, \mathrm{~W}_{\mathrm{m}}>0, \mathrm{~W}_{\mathrm{g}}<0$
C) $\mathrm{W}_{\mathrm{f}}<0, \mathrm{~W}_{\mathrm{m}}<0, \mathrm{~W}_{\mathrm{g}}<0$
D) $\mathrm{W}_{\mathrm{f}}<0, \mathrm{~W}_{\mathrm{m}}>0, \mathrm{~W}_{\mathrm{g}}>0$
E) $\mathrm{W}_{\mathrm{f}}>0, \mathrm{~W}_{\mathrm{m}}>0, \mathrm{~W}_{\mathrm{g}}>0$

Q5.
A ball is launched upward from the edge of a cliff. Which of the graphs shown in Figure 3 could possibly represent how the kinetic energy of the ball changes during its flight?

(a)

(b)

(c)

(d)

(e)
A) a
B) b
C) c
D) d
E) e

Q6.

A 2.00 kg ball is thrown with an initial velocity of $\vec{v}_{o}=18 \hat{i}+10 \hat{j}$, where v_{o} is in m / s. What is the maximum change in the potential energy of the ball-Earth system during its flight?
A) 100 J
B) -100 J
C) 50 J
D) -50 J
E) zero

Q7.

A 2.00 kg package is released on a rough 53.1° incline at 4.00 m from a long spring of force constant $120 \mathrm{~N} / \mathrm{m}$. The spring is attached to the bottom of the incline as shown in Figure 4. If the maximum compression of the spring is $d=1.00 \mathrm{~m}$, what is the work done by the friction force?

A) -18.4 J
B) +18.4 J
C) -60.0 J
D) +60.0 J
E) zero

Q8.
The only force acting on a particle is a conservative force \vec{F}. If the particle is at point A , the potential energy of the system associated with \vec{F} and the particle is 80 J . If the particle moves from point A to point B, the work done on the particle by \vec{F} is +20 J . What is the potential energy of the system with the particle at B ?
A) 60 J
B) 100 J
C) 20 J
D) 80 J
E) zero

Q9.
The force acting along the x axis on an 8 kg object varies as shown in Figure 5. The speed of the object at $x=0$ is zero. The speed of the object at $x=5.0 \mathrm{~m}$ is

A) $40 \mathrm{~m} / \mathrm{s}$
B) $30 \mathrm{~m} / \mathrm{s}$
C) $160 \mathrm{~m} / \mathrm{s}$
D) $80 \mathrm{~m} / \mathrm{s}$
E) zero

Q10.

A dam is 170 m high. The electrical power output from generators at its base is approximately 2000 MW . How many cubic meters of water must fall from the top of the dam per second to produce this amount of power if 50% of the work done on the water by gravity is converted to electrical energy? (Density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$)
A) $2.40 \times 10^{3} \mathrm{~m}^{3} / \mathrm{s}$
B) $3.40 \times 10^{1} \mathrm{~m}^{3} / \mathrm{s}$
C) $2.90 \times 10^{4} \mathrm{~m}^{3} / \mathrm{s}$
D) $4.80 \times 10^{3} \mathrm{~m}^{3} / \mathrm{s}$
E) $1.20 \times 10^{3} \mathrm{~m}^{3} / \mathrm{s}$

Q11.

Figure 6 shows an approximate plot of force magnitude F versus time t during the collision of a 58 g ball with a wall. The initial velocity of the ball is $34 \mathrm{~m} / \mathrm{s}$ perpendicular to the wall; the ball rebounds directly back with approximately the same speed, also perpendicular to the wall. What is $F_{\max }$, the maximum magnitude of the force on the ball from the wall during the collision?

A) $9.9 \times 10^{2} \mathrm{~N}$
B) $1.8 \times 10^{2} \mathrm{~N}$
C) $7.7 \times 10^{2} \mathrm{~N}$
D) $3.9 \times 10^{2} \mathrm{~N}$
E) $9.0 \times 10^{1} \mathrm{~N}$

Q12.
A 2100 kg truck traveling north at $41 \mathrm{~km} / \mathrm{h}$ turns east and accelerates to $51 \mathrm{~km} / \mathrm{h}$. What are the magnitude and direction of the change in its momentum?
A) $3.8 \times 10^{4} \mathrm{~kg} . \mathrm{m} / \mathrm{s}, 39^{\circ}$ South of East
B) $1.8 \times 10^{2} \mathrm{~kg} . \mathrm{m} / \mathrm{s}, 39^{\circ}$ South of West
C) $3.1 \times 10^{3} \mathrm{~kg} . \mathrm{m} / \mathrm{s}, 39^{\circ}$ South of East
D) $3.8 \times 10^{4} \mathrm{~kg} . \mathrm{m} / \mathrm{s}, 39^{\circ}$ North of East
E) $7.8 \times 10^{7} \mathrm{~kg} . \mathrm{m} / \mathrm{s}, 39^{\circ}$ South of East

Q13.

Two bodies, A and B, each with 2.0 kg mass collide. The velocities before the collision are $\vec{v}_{A}=(15 \hat{i}+30 \hat{j}) \mathrm{m} / \mathrm{s}$ and $\vec{v}_{B}=(-10 \hat{i}+5 \hat{j}) \mathrm{m} / \mathrm{s}$. After the collision, $\vec{v}_{A}^{\prime}=(-5 \hat{i}+20 \hat{j}) \mathrm{m} / \mathrm{s}$, what is the final velocity of B ?
A) $\vec{v}_{B}^{\prime}=(10 \hat{i}+15 \hat{j})$
B) $\vec{v}_{B}^{\prime}=10 \hat{i}$
C) $\vec{v}_{B}^{\prime}=15 \hat{j}$
D) $\vec{v}_{B}^{\prime}=(-15 \hat{i}-30 \hat{j})$
E) $\vec{v}_{B}^{\prime}=(10 \hat{i}-5 \hat{j})$

Q14.

Figure 7 shows a graph of a torque applied to a rotating body as a function of time. What is the change in angular momentum of the rotating body between time $t=0$ and $t=6 \mathrm{~s}$?

A) $50.0 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$
B) $10.0 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$
C) $20.0 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$
D) $30.0 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$
E) $40.0 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$

Q15.
A diver makes 2.5 revolutions on the way from a 10 m high platform to the water. Assuming zero initial vertical velocity, find the average angular velocity during the dive.
A) $11 \mathrm{rad} / \mathrm{s}$
B) $15 \mathrm{rad} / \mathrm{s}$
C) $51 \mathrm{rad} / \mathrm{s}$
D) $13 \mathrm{rad} / \mathrm{s}$
E) $21 \mathrm{rad} / \mathrm{s}$

Q16.
What is the linear speed of a point on Earth's surface at latitude 40° North? (Radius of Earth $=6.4 \times 10^{3} \mathrm{~km}$)
A) $3.6 \times 10^{2} \mathrm{~m} / \mathrm{s}$
B) $7.0 \times 10^{2} \mathrm{~m} / \mathrm{s}$
C) $1.8 \times 10^{2} \mathrm{~m} / \mathrm{s}$
D) $6.4 \times 10^{2} \mathrm{~m} / \mathrm{s}$
E) $4.9 \times 10^{5} \mathrm{~m} / \mathrm{s}$

Q17.

Figure 8 is a graph of the angular velocity versus time for a disk rotating like a merry-goaround. For a point on the disk rim, rank the instants a, b, c, and d according to the magnitude of the radial acceleration, greatest first.

A) $\mathrm{b}, \mathrm{a} \& \mathrm{c}$ tie, d
B) c, a, b \& d tie
C) $\mathrm{a} \& \mathrm{c}$ tie, $\mathrm{b} \& \mathrm{~d}$ tie
D) $\mathrm{b} \& \mathrm{~d}$ tie, $\mathrm{a} \& \mathrm{c}$ tie
E) a, b, c, d

Q18.
A force $\vec{F}=(-8.0 N) \hat{i}+(6.0 N) \hat{j} \quad$ acts on a particle with position vector $\vec{r}=(3.0 m) \hat{i}+(4.0 m) \hat{j}$. What is the torque on the particle about a point on the y axis with $y=4 \mathrm{~m}$?
A) $(18 \mathrm{~N} . \mathrm{m}) \hat{k}$
B) $(20 \mathrm{~N} . \mathrm{m}) \hat{k}$
C) $(16 \mathrm{~N} . \mathrm{m}) \hat{k}$
D) $(21 \mathrm{~N} . \mathrm{m}) \hat{k}$
E) $(27 \mathrm{~N} . \mathrm{m}) \hat{k}$

Q19.
A student of mass M stands on the rim of a frictionless merry-go-around (rotating disk) of radius R and rotational inertia I that is not moving. He throws a rock of mass m with speed v in a direction that is tangent to the outer edge of the merry-go-around. What is the angular speed of the student \& merry-go-around afterward?
A) $\omega=\frac{m R}{I+M R^{2}} v$
B) $\omega=\frac{M R}{I+m R^{2}} v$
C) $\omega=\frac{2 m R}{I+M R^{2}} v$
D) $\omega=\frac{m R}{2 I+M R^{2}} v$
E) $\omega=\frac{m}{I+M R^{2}} v$

Q20.
Figure 9 shows a solid ball that rolls smoothly from rest at height $\mathrm{H}=6.0 \mathrm{~m}$ until it leaves the horizontal section at the end of the track, at height $\mathrm{h}=2.0 \mathrm{~m}$. With what horizontal velocity will the ball leave the track?

A) $7.48 \mathrm{~m} / \mathrm{s}$
B) $9.38 \mathrm{~m} / \mathrm{s}$
C) $5.98 \mathrm{~m} / \mathrm{s}$
D) $2.18 \mathrm{~m} / \mathrm{s}$
E) $7.11 \mathrm{~m} / \mathrm{s}$

