Q1.
A force $\vec{F}=(12 \hat{i}+B \hat{j}) N$, where B is a constant, acts on an object and does 46 joules work as the object moves from the origin to the point $\vec{r}=(13 \hat{i}+11 \hat{j}) \mathrm{m}$. The value of B is:
A) -10 N
B) +10 N
C) -12 N
D) +15 N
E) +14 N

Q2.
A 9.00-kg box slides from rest down a frictionless incline from a height of 5.00 m as shown in Figure 1. A constant frictional force, introduced at point A, brings the block to rest at point $\mathbf{B}, 20.0$ m to the right of point \mathbf{A}. What is the coefficient of kinetic friction, μ_{k}, between the box and surface AB ?

A) 0.25
B) 0.11
C) 0.33
D) 0.47
E) 0.52

Q3.
In Figure 2, a $5.0-\mathrm{kg}$ block is moving at $5.0 \mathrm{~m} / \mathrm{s}$ along a horizontal frictionless surface toward an ideal spring that is attached to a wall. After the block collides with the spring, the spring is compressed a maximum distance of x_{m}. What is the speed of the block when the spring is compressed to only $\mathrm{x}_{\mathrm{m}} / 2$?
Fig\#

A) $4.3 \mathrm{~m} / \mathrm{s}$
B) $3.4 \mathrm{~m} / \mathrm{s}$
C) $7.1 \mathrm{~m} / \mathrm{s}$
D) $5.2 \mathrm{~m} / \mathrm{s}$
E) $6.3 \mathrm{~m} / \mathrm{s}$

Q4.
A net force of $(50 \hat{\mathrm{i}}) \mathrm{N}$ is acting on a $2.0-\mathrm{kg}$ box that was initially at rest at the origin. At the instant the object has the position vector $(2.0 \hat{\mathrm{i}}) \mathrm{m}$, the rate at which the force is doing work on the box is:
A) 500 W
B) 250 W
C) 75 W
D) 100 W
E) 300 W

Q5.
The only force acting on a particle is a conservative force \mathbf{F}. If the particle is at a point A, the potential energy of the system is 80 J . If the particle moves from point A to point B , the work done on the particle by \mathbf{F} is +20 J . As the particle reaches point B , the potential energy of the system is:
A) 60 J
B) 100 J
C) $\quad 20 \mathrm{~J}$
D) -100 J
E) $\quad-60 \mathrm{~J}$

Q6.
A $2.00-\mathrm{kg}$ mass is moved along a rough vertical circular track (radius $\mathrm{R}=0.800 \mathrm{~m}$) as shown in Figure 3. The speed of the mass at point A is $v_{A}=8.00 \mathrm{~m} / \mathrm{s}$, and at point B is $v_{B}=5.00 \mathrm{~m} / \mathrm{s}$. How much work is done on the mass between A and B by the force of friction? Fig\#

A) -7.64 J
B) -8.23 J
C) -2.91 J
D) -3.36 J
E) $0 \quad \mathrm{~J}$

Q7.
A compressed-spring-gun, with $\mathrm{k}=300 \mathrm{~N} / \mathrm{m}$, is used to shoot a ball, of mass $\mathrm{m}=10 \mathrm{~g}$, straight up into the air, see Figure 4. If the ball reaches a maximum height $h=10.0 \mathrm{~m}$, the compressed distance of the spring is: (neglect any friction and assume the spring obeys Hooke's law)? Fig\#

A) 8.1 cm
B) 5.5 cm
C) 12 cm
D) 3.0 cm
E) 1.3 cm

Q8.
The two masses in the Figure 5 are released from rest. After the $3.0-\mathrm{kg}$ mass had fallen 1.5 m , it reaches a speed of $3.76 \mathrm{~m} / \mathrm{s}$. How much work is done during this time interval by the frictional force on the 2.0 kg mass? (Assume that the pulley is frictionless and massless)

A) -8.8 J
B) -6.7 J
C) 20 J
D) -12 J
E) 28 J

Q9.
Figure 6 shows a 10.0 cm long uniform rod with mass 2.0 kg , attached to two uniform spheres of masses $m_{1}=15.0 \mathrm{~kg}$ and $\mathrm{m}_{2}=30.0 \mathrm{~kg}$ and diameters 2.0 cm and 7.0 cm , respectively. Find the $\mathrm{x}-$ coordinate of the COM of the system. Center of the small sphere $\left(\mathrm{m}_{1}\right)$ is at the origin of the coordinate system.

A) 9.51 cm
B) -1.7 cm
C) 20 cm
D) -12 cm
E) 2.8 cm

Q10.
A 10.0 g object with initial velocity $\vec{v}_{\mathrm{i}}=(24.0 \hat{\mathrm{i}}) \mathrm{m} / \mathrm{s}$ has a collision with a wall. After collision, the final velocity of the object is $\overrightarrow{\mathrm{v}}_{\mathrm{f}}=-(12.0 \hat{\mathrm{i}}) \mathrm{m} / \mathrm{s}$. If the collision lasted 0.01 s , what is the average force acted on the object during the collision?
A) $(-36 \hat{i}) \mathrm{N}$
B) $(-12 \hat{i}) \mathrm{N}$
C) $(24 \hat{i}) \mathrm{N}$
D) $(-16 \hat{i}) \mathrm{N}$
E) $(-48 \hat{j}) \mathrm{N}$

Q11.
A $1.0-\mathrm{kg}$ block (at rest on a horizontal frictionless surface) is connected to a spring ($\mathrm{k}=200 \mathrm{~N} / \mathrm{m}$) whose other end is fixed to a wall (see Figure 7). A $2.00-\mathrm{kg}$ block, moving at $4.00 \mathrm{~m} / \mathrm{s}$, collides with the $1.00-\mathrm{kg}$ block. If the two blocks stick together after the collision, what will be the maximum compression of the spring when the two blocks momentarily stop?
Fig\#

A) 0.33 m
B) 0.22 m
C) 1.12 m
D) 0.13 m
E) 0.08 m

Q12.
Block A with mass 2.0 kg and block B with mass 3.0 kg are moving towards each other along the x axis. The velocity of block A is $50 \mathrm{~m} / \mathrm{s}$ while block B velocity is $-20 \mathrm{~m} / \mathrm{s}$. Both the blocks undergo inelastic collision. The velocity of the center of mass of the two blocks system after the collision is:
A) $8.0 \mathrm{~m} / \mathrm{s}$
B) 0
C) $5.0 \mathrm{~m} / \mathrm{s}$
D) $30 \mathrm{~m} / \mathrm{s}$
E) $70 \mathrm{~m} / \mathrm{s}$

Q13.
A wheel (of mass M and radius $=0.20 \mathrm{~m}$) is mounted on a frictionless, horizontal axle. A light cord wrapped around the wheel supports a mass $m=0.50 \mathrm{~kg}$, as shown in the Figure 8. When released from rest the mass m falls with a downward acceleration of $5.0 \mathrm{~m} / \mathrm{s}^{2}$. What is the moment of inertia of the wheel about its axle? [Consider the cord does not slip]
Fig\#

A) $0.019 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
B) $0.027 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
C) $0.016 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
D) $0.023 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
E) $0.032 \mathrm{~kg} \cdot \mathrm{~m}^{2}$

Q14.
Figure 9 shows a uniform thin rod, with mass $\mathrm{m}_{1}=2.00 \mathrm{~kg}$ and length $\mathrm{L}=10.0 \mathrm{~cm}$, attached to a uniform solid sphere, of mass $\mathrm{m}_{2}=3.00 \mathrm{~kg}$ and diameter 7.00 cm . Find the rotational inertia of the system about the y-axis.
Fig\#

A) $0.0118 \quad \mathrm{~kg} \cdot \mathrm{~m}^{2}$
B) $0.0103 \mathrm{~kg} . \mathrm{m}^{2}$
C) $0.00814 \mathrm{~kg} . \mathrm{m}^{2}$
D) $0.00980 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
E) $0.00667 \mathrm{~kg} \cdot \mathrm{~m}^{2}$

Q15.
A wheel with a $0.10-\mathrm{m}$ radius is rotating at an angular velocity of $36 \mathrm{rev} / \mathrm{s}$. It then slows down uniformly to $15 \mathrm{rev} / \mathrm{s}$ over a 3.0 -s interval. What is the magnitude of the tangential acceleration of a point on the edge of the wheel?
A) $4.4 \mathrm{~m} / \mathrm{s}^{2}$
B) $1.5 \mathrm{~m} / \mathrm{s}^{2}$
C) $41 \mathrm{~m} / \mathrm{s}^{2}$
D) $0.70 \mathrm{~m} / \mathrm{s}^{2}$
E) $7.0 \mathrm{~m} / \mathrm{s}^{2}$

Q16.
A fan, initially at rest, is accelerated to angular velocity $\omega=2400 \mathrm{rev} / \mathrm{min}$ in 40 s by an electric motor. The average power of the motor during this time is $1.2 \times 10^{5} \mathrm{~W}$. What is the torque on the fan about the axis of rotation?
A) $955 \mathrm{~N} . \mathrm{m}$
B) $100 \mathrm{~N} . \mathrm{m}$
C) $723 \mathrm{~N} . \mathrm{m}$
D) $432 \mathrm{~N} . \mathrm{m}$
E) $600 \mathrm{~N} . \mathrm{m}$

Q17.
A man, holding equal mass m in each hand, is standing on a frictionless disk, rotating about an axis passing through its center. Initially, the man has both hands down, as shown in Figure 10A, and the system (man + disk) rotates with an angular velocity ω_{i}. Finally the man stretches his arms horizontally, as shown in Figure 10B, and the new angular velocity of the system is ω_{f}. The man's final rotational kinetic energy K_{f} with respect to his initial rotational kinetic energy K_{i} :

A) must decrease.
B) must increase.
C) must remain the same.
D) may increase or decrease depending on his initial angular velocity ω_{i}.
E) may increase or decrease depending on his final angular velocity ω_{f}.

Q18.
Two equal masses $\mathrm{m}_{1}=\mathrm{m}_{2}=1.50 \mathrm{~kg}$ are joined with a massless rod with length $\mathrm{L}=50.0 \mathrm{~cm}$. The rod is free to rotate in a horizontal plane without friction about a vertical axis through its center. With the rod initially at rest, an object with mass $\mathrm{M}=0.500 \mathrm{~kg}$ is moving horizontally towards m_{2} with a velocity $4.50 \mathrm{~m} / \mathrm{s}$, as shown in Figure 11 (top view). Finally the object collides with m_{2} and sticks to it and the rod rotates. The angular speed of the rod-masses system after the collision is:

A) $2.57 \mathrm{rad} / \mathrm{s}$
B) $1.24 \mathrm{rad} / \mathrm{s}$
C) $0.541 \mathrm{rad} / \mathrm{s}$
D) $5.14 \mathrm{rad} / \mathrm{s}$
E) $1.41 \mathrm{rad} / \mathrm{s}$

Q19.
A circular disc of mass 4.0 kg and radius 10 cm rotates about a vertical axis passing through its center. The variation of its angular momentum (L) with time (t) is given in the Figure 12. Find the angular acceleration of the disc at $\mathrm{t}=3.0 \mathrm{~s}$? Fig\#

A) $-100 \mathrm{rad} / \mathrm{s}^{2}$
B) $+15 \mathrm{rad} / \mathrm{s}^{2}$
C) $+50 \mathrm{rad} / \mathrm{s}^{2}$
D) $+100 \mathrm{rad} / \mathrm{s}^{2}$
E) $-5.6 \mathrm{rad} / \mathrm{s}^{2}$

Q20.
A hoop rolls smoothly, along a horizontal surface, with constant center of mass speed $\mathrm{v}_{\mathrm{com}}$. Its rotational kinetic energy is:
A) the same as its translational kinetic energy
B) half its translational kinetic energy
C) twice its translational kinetic energy
D) four times its translational kinetic energy
E) one-third its translational kinetic energy

