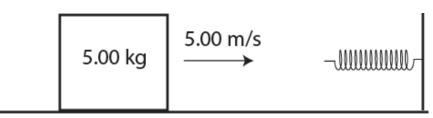

Q1.

A force $\vec{F} = (12\hat{i} + B\hat{j})N$, where B is a constant, acts on an object and does 46 joules work as the object moves from the origin to the point $\vec{r} = (13\hat{i} + 11\hat{j})m$. The value of B is:

- A) -10 N B) +10 N
- C) -12 N
- D) +15 N
- E) +14 N


Q2.

A 9.00-kg box slides from rest down a frictionless incline from a height of 5.00 m as shown in **Figure 1**. A constant frictional force, introduced at point **A**, brings the block to rest at point **B**, 20.0 m to the right of point **A**. What is the coefficient of kinetic friction, μ_k , between the box and surface AB?

Q3.

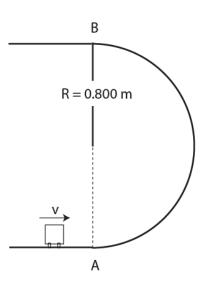
In **Figure 2**, a 5.0-kg block is moving at 5.0 m/s along a horizontal frictionless surface toward an ideal spring that is attached to a wall. After the block collides with the spring, the spring is compressed a maximum distance of x_m . What is the speed of the block when the spring is compressed to only $x_m/2$? Fig#

- A) 4.3 m/s
 B) 3.4 m/s
 C) 7.1 m/s
 D) 5.2 m/s
- E) 6.3 m/s

Q4.

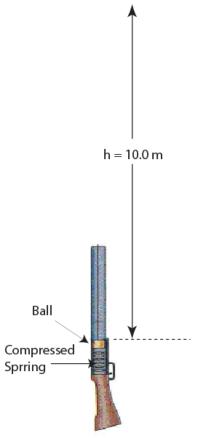
A net force of $(50 \hat{i})N$ is acting on a 2.0-kg box that was initially at rest at the origin. At the *instant* the object has the position vector $(2.0 \hat{i})m$, the rate at which the force is doing work on the box is:

- A) 500 W
- B) 250 W
- C) 75 W
- D) 100 W
- E) 300 W


Q5.

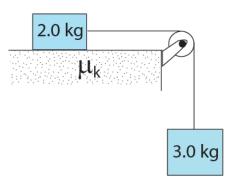
The only force acting on a particle is a conservative force **F**. If the particle is at a point A, the potential energy of the system is 80 J. If the particle moves from point A to point B, the work done on the particle by **F** is +20 J. As the particle reaches point B, the potential energy of the system is:

A)	60 J
B)	100 J
C)	20 J
D)	-100 J
E)	– 60 J


Q6.

A 2.00-kg mass is moved along a rough vertical circular track (radius R = 0.800 m) as shown in **Figure 3**. The speed of the mass at point A is $v_A = 8.00$ m/s, and at point B is $v_B = 5.00$ m/s. How much work is done on the mass between A and B by the force of friction? Fig#

A) - 7.64 J B) - 8.23 J C) - 2.91 J D) - 3.36 J E) 0 J Q7.

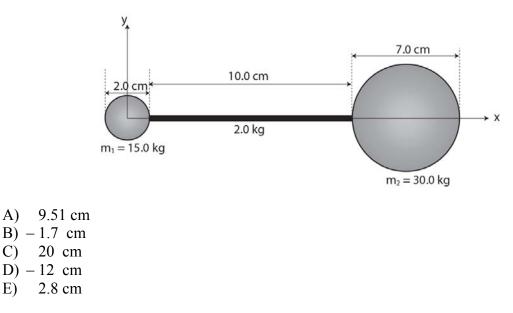

A compressed-spring-gun, with k = 300 N/m, is used to shoot a ball, of mass m = 10 g, straight up into the air, see **Figure 4**. If the ball reaches a maximum height h = 10.0 m, the compressed distance of the spring is: (neglect any friction and assume the spring obeys Hooke's law)? Fig#

A)	8.1 cm	
B)	5.5 cm	
C)	12 cm	
D)	3.0 cm	
E)	1.3 cm	

Q8.

The two masses in the Figure 5 are released from rest. After the 3.0-kg mass had fallen 1.5 m, it reaches a speed of 3.76 m/s. How much work is done during this time interval by the frictional force on the 2.0 kg mass? (Assume that the pulley is frictionless and massless)

A)	– 8.8 J
B)	-6.7~J
C)	20 J
D)	– 12 J
E)	28 J

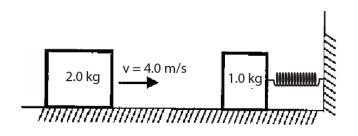

Q9.

A)

C)

E)

Figure 6 shows a 10.0 cm long uniform rod with mass 2.0 kg, attached to two uniform spheres of masses $m_1 = 15.0 \text{ kg}$ and $m_2 = 30.0 \text{ kg}$ and diameters 2.0 cm and 7.0 cm, respectively. Find the xcoordinate of the COM of the system. Center of the small sphere (m_1) is at the origin of the coordinate system.


Q10.

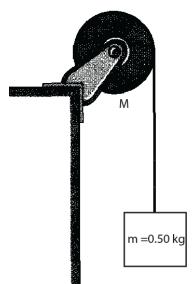
A 10.0 g object with initial velocity $\vec{v}_i = (24.0 \,\hat{i}) \,\text{m/s}$ has a collision with a wall. After collision, the final velocity of the object is $\vec{v}_f = -(12.0 \,\hat{i}) \,\text{m/s}$. If the collision lasted 0.01 s, what is the average force acted on the object during the collision?

A) $(-36\hat{i})N$ B) $(-12\hat{i})N$ C) $(24\hat{i})N$ D) $(-16\hat{i})N$ E) $(-48\hat{j})N$

Q11.

A 1.0-kg block (at rest on a horizontal frictionless surface) is connected to a spring (k = 200 N/m) whose other end is fixed to a wall (see **Figure 7**). A 2.00-kg block, moving at 4.00 m/s, collides with the 1.00-kg block. If the two blocks stick together after the collision, what will be the maximum compression of the spring when the two blocks momentarily stop? Fig#

A) 0.33 m
B) 0.22 m
C) 1.12 m
D) 0.13 m
E) 0.08 m

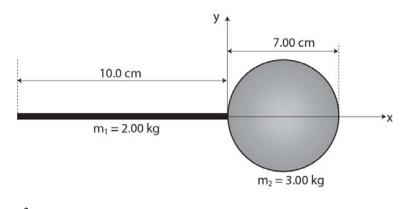

Q12.

Block A with mass 2.0 kg and block B with mass 3.0 kg are moving towards each other along the x-axis. The velocity of block A is 50 m/s while block B velocity is -20 m/s. Both the blocks undergo inelastic collision. The velocity of the center of mass of the two blocks system after the collision is:

- A) 8.0 m/s
- B) 0
- C) 5.0 m/s
- D) 30 m/s
- E) 70 m/s

Q13.

A wheel (of mass M and radius = 0.20 m) is mounted on a frictionless, horizontal axle. A light cord wrapped around the wheel supports a mass m = 0.50 kg, as shown in the **Figure 8**. When released from rest the mass m falls with a downward acceleration of 5.0 m/s^2 . What is the moment of inertia of the wheel about its axle? [Consider the cord does not slip] Fig#



A)	0.019	$kg \cdot m^2$
	0.027	
C)	0.016	kg·m ²
D)	0.023	kg·m ²
E)	0.032	kg·m ²

Q14.

Figure 9 shows a uniform thin rod, with mass $m_1 = 2.00$ kg and length L = 10.0 cm, attached to a uniform solid sphere, of mass $m_2 = 3.00$ kg and diameter 7.00 cm. Find the rotational inertia of the system about the y-axis.

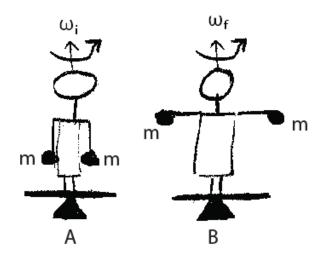
Fig#

A)	0.0118	kg.m ²
B)	0.0103	kg.m ²
C)	0.00814	kg.m ²
D)	0.00980	kg.m ²
E)	0.00667	kg.m ²

Q15.

A wheel with a 0.10-m radius is rotating at an angular velocity of 36 rev/s. It then slows down uniformly to 15 rev/s over a 3.0-s interval. What is the magnitude of the tangential acceleration of a point on the edge of the wheel?

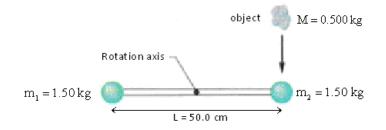
A)	4.4	m/s^2
B)	1.5	m/s^2
C)	41	m/s^2
D)	0.70	m/s^2
E)	7.0	m/s^2


Q16.

A fan, initially at rest, is accelerated to angular velocity $\omega = 2400 \text{ rev/min}$ in 40 s by an electric motor. The average power of the motor during this time is 1.2×10^5 W. What is the torque on the fan about the axis of rotation?

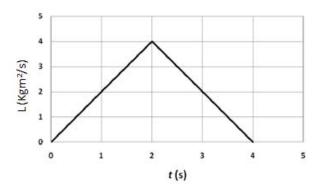
- A) 955 N.m
- B) 100 N.m
- C) 723 N.m
- D) 432 N.m
- E) 600 N.m

Q17.


A man, holding equal mass m in each hand, is standing on a frictionless disk, rotating about an axis passing through its center. Initially, the man has both hands down, as shown in **Figure 10A**, and the system (man + disk) rotates with an angular velocity ω_i . Finally the man stretches his arms horizontally, as shown in **Figure 10B**, and the new angular velocity of the system is ω_f . The man's final rotational kinetic energy K_f with respect to his initial rotational kinetic energy K_i:

- A) must decrease.
- B) must increase.
- C) must remain the same.
- D) may increase or decrease depending on his initial angular velocity ω_i .
- E) may increase or decrease depending on his final angular velocity ω_{f} .

Q18.


Two equal masses $m_1 = m_2 = 1.50$ kg are joined with a massless rod with length L= 50.0 cm. The rod is free to rotate in a horizontal plane without friction about a vertical axis through its center. With the rod initially at rest, an object with mass M = 0.500 kg is moving horizontally towards m_2 with a velocity 4.50 m/s, as shown in **Figure 11** (top view). Finally the object collides with m_2 and sticks to it and the rod rotates. The angular speed of the rod-masses system after the collision is:

- A) 2.57 rad/s
 B) 1.24 rad/s
 C) 0.541 rad/s
- D) 5.14 rad/s
- E) 1.41 rad/s

Q19.

A circular disc of mass 4.0 kg and radius 10 cm rotates about a vertical axis passing through its center. The variation of its angular momentum (L) with time (t) is given in the **Figure 12**. Find the angular acceleration of the disc at t = 3.0 s? Fig#

A) -100 rad/s^2 B) $+15 \text{ rad/s}^2$ C) $+50 \text{ rad/s}^2$ D) $+100 \text{ rad/s}^2$ E) -5.6 rad/s^2

Q20.

A hoop rolls smoothly, along a horizontal surface, with constant center of mass speed v_{com} . Its rotational kinetic energy is:

- A) the same as its translational kinetic energy
- B) half its translational kinetic energy
- C) twice its translational kinetic energy
- D) four times its translational kinetic energy
- E) one-third its translational kinetic energy