Major 2 Exam - 041

Q1 Q0 A particle moves in the $x-y$ plane from the point $(0,1) \mathrm{m}$ to Q0 point $(3,5) \mathrm{m}$ while being acted upon by a constant force Q0 $F=4 i+2 j+4 k(N)$. The work done on the particle by Q0 this force is:
Q0
A1 20 J
A2 10 J
A3 -20 J
A4 30 J
A5 0
Q0
Q2 Q0 Which of the following statements is CORRECT?
Q0
A1 The centripetal force acting on a particle rotating in a
A1 circle does no work on the particle.
A2 The work done by a force is always equal to the product of
A2 the force and the distance travelled.
A3 When an object is displaced horizontally, the gravitational
A3 force does work on it.
A4 When an object is displaced horizontally on a table, the normal
A4 force does work on it.
A5 If a person lifts a heavy block a vertical distance, then
A5 his work is zero.
Q0
Q3 Q0 A car accelerates from zero to $30 \mathrm{~m} / \mathrm{s}$ in 1.5 s . Assuming
Q0 the same average power is delivered by the car, how long
Q0 does it take to accelerate it from zero to $60 \mathrm{~m} / \mathrm{s}$.
Q0 (Ignore friction).
Q0
A1 6.0 s
A2 3.0 s
A3 4.5 s
A4 1.5 s
A5 9.0 s
Q0
Q4 Q0 A 3.0 kg block is released from a compressed spring (k=120 N/m).
Q0 It travels over a horizontal surface (mu =0.20) for a distance
Q0 of 2.0 m before coming to rest, Fig 1. How far was the spring Q0 compressed before being released ?
Q0
A1 0.44 m
A2 0.39 m
A3 0.23 m
A4 0.13 m
A5 0.56 m
Q0
Q5 Q0 A projectile is fired from the top of a 40 m high building with
Q0 a speed of $20 \mathrm{~m} / \mathrm{s}$. What will be its speed when it strikes the
Q0 ground?
Q0
A1 $34 \mathrm{~m} / \mathrm{s}$
A2 $10 \mathrm{~m} / \mathrm{s}$
A3 $82 \mathrm{~m} / \mathrm{s}$
A4 $16 \mathrm{~m} / \mathrm{s}$
A5 $50 \mathrm{~m} / \mathrm{s}$
Q0
Q6 Q0 A 75 kg parachutist releases himself off a tower that is 85 m Q0 high. Assume that he starts from rest and reaches the ground

Q0 with a speed of $5.0 \mathrm{~m} / \mathrm{s}$. How much work was done by the Q0 nonconservative forces on him?
Q0
A1 -6.2* 10**4 J
A2 -3.2* 10**5 J
A3 -4.5* 10**4 J
A4 -9.8* 10**4 J
A5 -4.5* 10**5 J
Q0
Q7 Q0 A 1.0 kg particle is moving with a velocity of $16 \mathrm{~m} / \mathrm{s}$ along the Q0 positive x direction while a 3.0 kg particle is moving with a
Q0 velocity of $4.0 \mathrm{~m} / \mathrm{s}$ along the positive y direction.
Q0 Find the magnitude of their center of mass velocity.
Q0
A1 $5.0 \mathrm{~m} / \mathrm{s}$
A2 $4.0 \mathrm{~m} / \mathrm{s}$
A3 $16 \mathrm{~m} / \mathrm{s}$
A4 $7.0 \mathrm{~m} / \mathrm{s}$
A5 0
Q0
Q8 Q0 A 10 kg bomb initially at rest explodes, breaking into two Q0 pieces of masses 4.0 kg and 6.0 kg . The 4.0 kg piece fly off Q0 along the $+x$ axis with a speed $30 \mathrm{~m} / \mathrm{s}$. Find the velocity of Q0 the 6.0 kg piece.
Q0
A1 $20 \mathrm{~m} / \mathrm{s}$ along the $-x$ axis
A2 $30 \mathrm{~m} / \mathrm{s}$ along the $-x$ axis
A3 $30 \mathrm{~m} / \mathrm{s}$ along the $+x$ axis
A4 $20 \mathrm{~m} / \mathrm{s}$ along the $+x$ axis
A5 $15 \mathrm{~m} / \mathrm{s}$ along the $-x$ axis
Q0
Q9 Q0 A 0.5 kg ball having velocity (10 i $+10 \mathrm{j}) \mathrm{m} / \mathrm{s}$ collides and
Q0 bounces off a wall with a velocity of (-5.0 i $+10 \mathrm{j}) \mathrm{m} / \mathrm{s}$. Find
Q0 the average force on the ball if the collision time is 0.01 s .
Q0
A1 (-750 i) N
A2 (-250 i) N
A3 (-200 i) N
A4 (150 i + 200 j) N
A5 (25 i + 100 j) N
Q0
Q10Q0 A circular hole of radius 5.0 cm is cut from a uniform square
Q0 of metal sheet having sides 20 cm as shown in Fig 2. Which
Q0 point could be the center of mass of this sheet?
Q0
A1 Point B
A2 Point A
A3 Point C
A4 Point D
A5 Point E
Q0
Q11Q0 A 2.0 kg block is given a single impulsive force in the
Q0 positive x-direction as shown in Fig 3. If the velocity of
Q0 the block at $t=0$ was $-2.0 \mathrm{~m} / \mathrm{s}$, find its velocity at $\mathrm{t}=5.0 \mathrm{~s}$.
Q0
A1 $3.0 \mathrm{~m} / \mathrm{s}$
A2 $5.0 \mathrm{~m} / \mathrm{s}$
A3 $2.0 \mathrm{~m} / \mathrm{s}$
A4 $6.0 \mathrm{~m} / \mathrm{s}$
A5 $1.0 \mathrm{~m} / \mathrm{s}$

PHYS101 - Second Major Exam - 041

(

Q12Q0 As shown in Fig 4, a ball of mass M is hanging from a rope to
Q0 make a pendulum. A 10 g bullet strikes the ball with a speed
Q0 $\mathrm{v}=308 \mathrm{~m} / \mathrm{s}$. The center of mass of the ball + bullet rises
Q0 a vertical distance of $h=12 \mathrm{~cm}$. Assuming that the bullet
Q0 remains embedded, calculate the mass M of the ball.
Q0
A1 2.0 kg
A2 5.0 kg
A3 3.0 kg
A4 6.0 kg
A5 8.0 kg
Q0
Q13Q0 A ball of mass $m 1=0.2 \mathrm{~kg}$ and speed= v 1 makes an elastic head-on
Q0 collision with another ball of mass m 2 initially at rest. After
Q0 collision, $m 1$ continues to move in the original direction but
Q0 with speed $=(1 / 3) v 1$. What is the value of $m 2$?
Q0
A1 0.1 kg
A2 0.3 kg
A3 0.2 kg
A4 0.4 kg
A5 0.5 kg
Q0
Q14Q0 A uniform rod $(M=2.0 \mathrm{~kg}, \mathrm{~L}=2.0 \mathrm{~m})$ is held vertical about
Q0 a pivot at point P, a distance L/4 from one end (see Fig 7).
Q0 The rotational inertia of the rod about P is $1.17 \mathrm{kg*m**} 2$. If it
Q0 starts rotating from rest, what is the linear speed of the
Q0 lowest point of the rod as it passes again through the vertical
Q0 position (v)?
Q0
A1 $8.7 \mathrm{~m} / \mathrm{s}$
A2 $4.8 \mathrm{~m} / \mathrm{s}$
A3 $17 \mathrm{~m} / \mathrm{s}$
A4 $2.4 \mathrm{~m} / \mathrm{s}$
A5 zero
Q0
Q15Q0 Consider two thin rods each of length ($\mathrm{L}=1.5 \mathrm{~m}$) and mass 30 g , Q0 arranged on a frictionless table as shown in Fig 5. The system
Q0 rotates about a vertical axis through point 0 with constant
Q0 angular speed of 4.0 rad/s. What is the angular momentum of the
Q0
Q0
A1 $0.18 \mathrm{kg*m**}$ /s
A2 $0.54 \mathrm{~kg} \mathrm{~km}^{* *} 2 / \mathrm{s}$
A3 $1.5 \mathrm{~kg}^{*} \mathrm{~m} * * 2 / \mathrm{s}$
A4 $0.27 \mathrm{~kg}^{*} \mathrm{~m} * * 2 / \mathrm{s}$
A5 0
Q0
Q16Q0 At $\mathrm{t}=0$, a disk has an angular velocity of $360 \mathrm{rev} / \mathrm{min}$, and
Q0 constant angular acceleration of $-0.50 \mathrm{rad} / \mathrm{s}^{* *} 2$. How many
Q0 rotations does the disk make before coming to rest?
Q0
A1 22
A2 180
A3 360
A4 90
A5 113
Q0

Q17Q0 In Fig 6, $m 1=0.50 \mathrm{~kg}, \mathrm{~m} 2=0.40 \mathrm{~kg}$ and the pulley has a disk
Q0 shape of radius 0.05 m and mass $\mathrm{M}=1.5 \mathrm{~kg}$. What is the linear
Q0 acceleration of the block of mass m2?
Q0
A1 $0.59 \mathrm{~m} / \mathrm{s}^{* *} 2$
A2 $0.42 \mathrm{~m} / \mathrm{s}^{* *} 2$
A3 $1.46 \mathrm{~m} / \mathrm{s}^{* *} 2$
A4 $0.21 \mathrm{~m} / \mathrm{s}^{* *} 2$
A5 0.0
Q0
Q18Q0 A uniform solid sphere of radius 0.10 m rolls smoothly across
Q0 a horizontal table at a speed $0.50 \mathrm{~m} / \mathrm{s}$ with total kinetic
Q0 energy 0.70 J . Find the mass of the sphere.
Q0
A1 4.0 kg
A2 8.0 kg
A3 2.0 kg
A4 1.0 kg
A5 5.0 kg
Q0
Q19Q0 A 2.0 kg particle is moving such that its position vector (r)
Q0 relative to the origin is $r=(-2.0 * t * * 2 i+3.0 j) \mathrm{m}$. What is
q0 the torque (about the origin) acting on the particle at t=2.0 s?
Q0
A1 24 k N.m
A2 -36 k N.m
A3 - 24 k N.m
A4 -48 k N.m
A5 0
Q0
Q20Q0 A man, with his arms at his sides, is spinning on a light
Q0 turntable that can rotate freely about a vertical frictionless
Q0 axis. When he extends his arms:
Q0
A1 his angular velocity will decrease.
A2 his angular momentum will increase.
A3 his angular velocity remains the same.
A4 his rotational inertia decreases.
A5 his rotational kinetic energy remains the same.

