Phys101	First Major	Code: 1
Term: 112	Tuesday, March 06, 2012	Page: 1

Q1.
Express the speed of sound, $330 \mathrm{~m} / \mathrm{s}$ in miles $/ \mathrm{h}$.(Take $1 \mathrm{mile}=1609 \mathrm{~m}$)

Answer:

$$
330 \frac{\mathrm{~m}}{\mathrm{~s}}=330 \frac{1 \mathrm{~m} \frac{1 \mathrm{mile}}{1609 \mathrm{~m}}}{1 \mathrm{~s} \frac{1 \text { hour }}{3600 \mathrm{~s}}}=330 \times \frac{3600}{1609} \frac{\text { mile }}{\mathrm{h}}=738 \frac{\mathrm{mile}}{\mathrm{~h}}
$$

A) $738 \mathrm{miles} / \mathrm{h}$
B) 330 miles $/ \mathrm{h}$
C) $147 \mathrm{miles} / \mathrm{h}$
D) $0.205 \mathrm{miles} / \mathrm{h}$
E) $980 \mathrm{miles} / \mathrm{h}$

Q2.
What is the dimension of the constant G in the equation: $F=G \frac{m_{1} m_{2}}{r^{2}}$, where F is force, m_{1} and m_{2} are masses and r is the distance between the two masses.

Answer:

$$
\mathrm{G}=\frac{\mathrm{r}^{2}}{\mathrm{~m}_{1} \mathrm{~m}_{2}} \mathrm{~F}=\frac{\mathrm{L}^{2}}{\mathrm{M}^{2}} \mathrm{MLT}^{-2}=\mathrm{L}^{3} \mathrm{M}^{-1} \mathrm{~T}^{-2}
$$

A) $\mathrm{L}^{3} \mathrm{M}^{-1} \mathrm{~T}^{-2}$
B) LM^{-2}
C) $\mathrm{L}^{2} \mathrm{M}^{-3}$
D) MTL^{-2}
E) $\mathrm{ML}^{2} \mathrm{~T}^{-1}$

Q3.

A vector $\overrightarrow{\mathrm{A}}$ is added to the sum of two vectors $\overrightarrow{\mathrm{B}}=3.0 \hat{\mathrm{i}}-2.0 \hat{\mathrm{j}}-2.0 \hat{\mathrm{k}}$ and $\vec{C}=2.0 \hat{i}-\hat{j}+3.0 \hat{k}$ such that $\vec{A}+\vec{B}+\vec{C}=\hat{k}$. The vector \vec{A} is:

Answer:

$$
\begin{aligned}
\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}+\overrightarrow{\mathrm{C}} & =\hat{\mathrm{k}} \Rightarrow \overrightarrow{\mathrm{~A}}+3.0 \hat{\mathrm{i}}-2.0 \hat{\mathrm{j}}-2.0 \hat{\mathrm{k}}+2.0 \hat{\mathrm{i}}-\hat{\mathrm{j}}+3.0 \hat{\mathrm{k}}=\hat{\mathrm{k}} \\
& \Rightarrow \overrightarrow{\mathrm{~A}}+5.0 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}=0
\end{aligned}
$$

A) $-5.0 \hat{i}+3.0 \hat{j}$
B) $5.0 \hat{\mathrm{i}}-3.0 \hat{\mathrm{j}}$
C) $-3.0 \hat{\mathrm{i}}-1.0 \hat{\mathrm{j}}$
D) $-1.0 \hat{i}+3.0 \hat{j}$
E) $3.0 \hat{j}$

Q4.

Consider the vector $\vec{A}=3.0 \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}}$. Which of the following vectors is perpendicular to vector \vec{A} :

Answer:

$$
\vec{A} \cdot \vec{B}=0 \Rightarrow A_{x} B_{x}+A_{y} B_{y}=0 \Rightarrow \frac{B_{y}}{B_{x}}=-\frac{A_{x}}{A_{y}}=\frac{-3}{4} \text { or } \frac{3}{-4}
$$

A) $4.0 \hat{i}-3.0 \hat{j}$
B) $3.0 \hat{i}-4.0 \hat{j}$
C) $4.0 \hat{i}+3.0 \hat{j}$
D) $-3.0 \hat{i}-4.0 \hat{j}$
E) $3.0 \hat{i}+4.0 \hat{j}$

Q5.

Find the sum of the following two vectors: $\vec{A}: 8.66$ in $+x$-direction, $\vec{B}: 10.0$, at 60° from $+y$-axis measured counterclockwise.

Answer:

$$
\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}=8.66 \hat{\mathrm{i}}+10.0 \sin 150^{\circ} \hat{\mathrm{j}}+10.0 \cos 15^{\circ} \hat{\mathrm{i}}=5.00 \hat{\mathrm{j}}
$$

A) $5.00 \hat{j}$
B) $3.00 \hat{i}+4.00 \hat{j}$
C) $6.00 \hat{i}+8.00 \hat{j}$
D) $8.66 \hat{i}+10.0 \hat{j}$
E) $\hat{i}+16.7 \hat{j}$

Q6.

Starting at time $t=0$, an object moves along a straight line. Its coordinate in meters is given by $x(t)=75 t-1.0 t^{3}$, where t is in seconds. When it momentarily stops, its position is:

Answer:

$$
\begin{aligned}
\mathrm{x}(\mathrm{t}) & =75 \mathrm{t}-1.0 \mathrm{t}^{3} \Rightarrow \mathrm{v}(\mathrm{t})=75-3 \mathrm{t}^{2}=0 \Rightarrow \mathrm{t}=5 \mathrm{~s} \\
& \Rightarrow \mathrm{x}(\mathrm{t})=75 \times 5-1.0 \times 5^{3}=250 \mathrm{~m}
\end{aligned}
$$

A) $x=250 \mathrm{~m}$
B) $x=150 \mathrm{~m}$
C) $x=300 \mathrm{~m}$
D) $x=75 \mathrm{~m}$
E) $x=350 \mathrm{~m}$

Phys101	First Major	Code: 1
Term: 112	Tuesday, March 06, 2012	Page: 3

Q7.
An object starts from rest at the origin and moves along the x axis with a constant acceleration of $4.0 \mathrm{~m} / \mathrm{s}^{2}$. Its average velocity as it goes from $x=2.0 \mathrm{~m}$ to $x=18.0 \mathrm{~m}$ is:
Answer:

$$
\begin{aligned}
\mathrm{v}^{2}(\mathrm{t}) & =\mathrm{v}_{\mathrm{o}}^{2} \mathrm{t}+2 \mathrm{ad} \Rightarrow \mathrm{v}^{2}(2)=0+2 \times 4 \times 2=16(\mathrm{~m} / \mathrm{s})^{2} \\
& \Rightarrow \mathrm{v}^{2}(18)=0+2 \times 4 \times 18=144(\mathrm{~m} / \mathrm{s})^{2} \\
& \Rightarrow v_{\text {ave }}=\frac{\mathrm{v}(2)+\mathrm{v}(18)}{2}=\frac{4+12}{2}=8 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

A) $8.0 \mathrm{~m} / \mathrm{s}$
B) $6.0 \mathrm{~m} / \mathrm{s}$
C) $3.0 \mathrm{~m} / \mathrm{s}$
D) $5.0 \mathrm{~m} / \mathrm{s}$
E) $1.0 \mathrm{~m} / \mathrm{s}$

Q8.
A ball is thrown vertically upward. After 4.00 s the ball returned back to its initial position. The maximum height above the initial position of the ball is:

Answer:

Going up takes $1 / 2$ the total time.

$$
\mathrm{d}=\mathrm{vt}-\frac{1}{2} \mathrm{at}^{2} \Rightarrow \mathrm{~d}=0+\frac{1}{2} 9.8 \times 2^{2}=19.6 \mathrm{~m}
$$

A) 19.6 m
B) 4.90 m
C) 9.8 m
D) 11.0 m
E) 15.0 m

Phys101	First Major	Code: 1
Term: 112	Tuesday, March 06, 2012	Page: 4

Q9.
Figure 1 represents the straight line motion of a car. Which of the following statements is true?

Fig\#

Answer:

Acceleration in the first two seconds is the slope in this interval $=\frac{12-0}{2-0}=6 \mathrm{~m} / \mathrm{s}^{2}$. Thus the Answer is A
A) The car accelerates at $6 \mathrm{~m} / \mathrm{s}^{2}$ for the first 2 s
B) The car accelerates, stops, and reverses
C) The car is moving for a total time of 12 s
D) The car decelerates at $12 \mathrm{~m} / \mathrm{s}^{2}$ for the last 4 s
E) The car returns to its starting point when $t=9 \mathrm{~s}$

Q10.
At $\mathrm{t}=0$, a car moves with initial velocity $\vec{v}_{i}=(3.0 \hat{\mathrm{i}}+5.0 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$. At $\mathrm{t}=2.0 \mathrm{~s}$, the velocity becomes $\vec{v}_{f}=(8.0 \hat{\mathrm{i}}-7.0 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$. What is the direction of the average acceleration of the car for the time interval from $t=0$ to $t=2.0 \mathrm{~s}$?

Answer:

With $\Delta t=2 \mathrm{~s}$, one finds:

$$
\vec{a}=\frac{\vec{v}_{f}-\vec{v}_{i}}{\Delta t}=\frac{5.0 \hat{i}-12.0 \hat{j}}{2}=2.5 \hat{i}-6.0 \hat{j}
$$

The direction is $\tan ^{-1}\left(\frac{-6}{2.5}\right)=-67^{\circ}$ from the x -axis
A) -67° from the x-axis
B) 67° from the x-axis
C) 33° from the x-axis
D) -33° from the x-axis
E) 52° from the x -axis

Q11.
A particle moves in the $x y$-plane with a constant acceleration given by $\vec{a}=(-4.0 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}^{2}$. At t $=0$ its position vector and velocity are $\vec{r}_{0}=(10 \hat{\mathrm{i}}) \mathrm{m}$ and $\overrightarrow{\mathrm{v}}_{\mathrm{o}}=(-2.0 \hat{\mathrm{i}}+8.0 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$, respectively. What is the distance of the particle from the origin at $t=2.0 \mathrm{~s}$?

Answer:

With $\mathrm{t}=2$, one finds:

$$
r=r_{o}+v t+\frac{1}{2} a t^{2}=(10 \hat{i})+(-2.0 \hat{i}+8.0 \hat{j}) 2+\frac{1}{2}(-4.0 \hat{j}) 2^{2}=6 \hat{i}+8.0 \hat{j}
$$

Distance $=\sqrt{100}=10$
A) 10 m
B) 6.4 m
C) 8.9 m
D) 2.0 m
E) 6.2 m

Q12.
A particle moves in the $x y$-plane in a circle centered on the origin. At a certain instant the velocity and acceleration of the particle are $(4.0 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$ and $(-3.0 \hat{\mathrm{i}}) \mathrm{m} / \mathrm{s}^{2}$, respectively. What is the radius of the circle?

Answer:

$$
\mathrm{a}=\frac{\mathrm{v}^{2}}{\mathrm{R}} \Rightarrow \mathrm{R}=\frac{\mathrm{v}^{2}}{\mathrm{a}}=\frac{4^{2}}{3}=5.333 \mathrm{~m}
$$

A) $x=5.3 \mathrm{~m}$
B) $x=4.4 \mathrm{~m}$
C) $x=1.3 \mathrm{~m}$
D) $x=3.1 \mathrm{~m}$
E) $x=2.2 \mathrm{~m}$

Phys101	First Major	Code: 1
Term: 112	Tuesday, March 06, 2012	Page: 6

Q13.
: A projectile is fired with an initial speed v_{0} directed at an angle θ_{0} above the horizontal. If the speed at maximum height is $\frac{v_{o}}{2}$, find the angle θ_{0}.

Answer:

$$
\mathrm{v}_{\max }=\mathrm{v}_{\mathrm{o}} \cos \theta_{\mathrm{o}}=\frac{\mathrm{v}_{0}}{2} \Rightarrow \cos \theta_{\mathrm{o}}=\frac{1}{2} \Rightarrow \theta_{\mathrm{o}}=60^{\circ}
$$

A) 60°
B) 76°
C) 30°
D) 45°
E) 55°

Q14.
: Relative to the air, a plane flies eastward at a speed of $156 \mathrm{~m} / \mathrm{s}$. A wind is blowing southward at a speed of $20.0 \mathrm{~m} / \mathrm{s}$, relative to the ground. The velocity of the plane relative to the ground is:

Answer:

$$
\begin{array}{ll}
& \rightarrow \mathrm{V}_{\mathrm{PA}} \\
\mathrm{~V}_{\mathrm{PG}} \square & \downarrow \mathrm{~V}_{\mathrm{AG}}
\end{array}
$$

$\overrightarrow{\mathrm{V}}_{\mathrm{PA}}=\overrightarrow{\mathrm{V}}_{\mathrm{PG}}-\overrightarrow{\mathrm{V}}_{\mathrm{AG}}$
$\mathrm{V}_{\mathrm{pG}}=\sqrt{\mathrm{V}_{\mathrm{AG}}^{2}+\mathrm{V}_{\mathrm{PA}}^{2}}=\sqrt{156^{2}+20^{2}}=157 \mathrm{~m} / \mathrm{s} \Rightarrow \tan ^{-1}\left(\frac{20}{156}\right)=7.31^{\circ}$ South of east
A) $157 \mathrm{~m} / \mathrm{s}$ at an angle 7.31° south of east.
B) $157 \mathrm{~m} / \mathrm{s}$ at an angle 7.31° east of south
C) $155 \mathrm{~m} / \mathrm{s}$ at an angle 7.36° south of east
D) $155 \mathrm{~m} / \mathrm{s}$ at an angle 7.36° east of south
E) $157 \mathrm{~m} / \mathrm{s}$ at an angle 7.36° south of east

Phys101	First Major	Code: 1
Term: 112	Tuesday, March 06, 2012	Page: 7

Q15.
A ball of mass 0.50 kg attains acceleration, $\vec{a}=(4.0 \hat{\mathrm{i}}+6.0 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}^{2}$ as a result of two forces \vec{F}_{1} and \vec{F}_{2}. If $\vec{F}_{1}=(\mathrm{A} \hat{\mathrm{i}}-\mathrm{B} \hat{\mathrm{j}}) \mathrm{N}$, and $\vec{F}_{2}=(\mathrm{B} \hat{\mathrm{i}}) \mathrm{N}$, where A and B are constants, find the value of A .

Answer:

$$
\begin{aligned}
m \mathrm{a} & =\overrightarrow{\mathrm{F}}_{1}+\overrightarrow{\mathrm{F}}_{2} \Rightarrow 0.5(4.0 \hat{\mathrm{i}}+6.0 \hat{\mathrm{j}})=(\mathrm{A} \hat{\mathrm{i}}-\mathrm{B} \hat{\mathrm{j}})+(\mathrm{B} \hat{\mathrm{i}}) \\
& \Rightarrow 2.0 \hat{\mathrm{i}}=\mathrm{A} \hat{\mathrm{i}}+B \hat{\mathrm{i}} ; 3.0 \hat{\mathrm{j}}=-\mathrm{B} \hat{\mathrm{j}} \\
& \Rightarrow B=-3, \quad A+B=2 \Rightarrow A=5 \mathrm{~N}
\end{aligned}
$$

A) 5.0 N
B) 2.0 N
C) 4.0 N
D) 6.0 N
E) 0.50 N

Q16.

A 70.0 kg person stands on a scale in an elevator. If the scale reading was 826 N , what is the acceleration of the elevator?
Answer: Since N (826 N) > mg (70 9.8=686 N), thus the direction of the acceleration is upward.

$$
\mathrm{ma}=\mathrm{N}-\mathrm{mg} \Rightarrow \mathrm{a}=\frac{\mathrm{N}-\mathrm{mg}}{\mathrm{~m}}=\frac{826-70 \times 9.8}{70}=2.0 \mathrm{~m} / \mathrm{s}^{2} \quad \text { upward }
$$

A) $2.00 \mathrm{~m} / \mathrm{s}^{2}$ upward
B) $2.00 \mathrm{~m} / \mathrm{s}^{2}$ downward
C) Zero
D) $5.00 \mathrm{~m} / \mathrm{s}^{2}$ upward
E) $5.00 \mathrm{~m} / \mathrm{s}^{2}$ downward

Phys101	First Major	Code: 1
Term: 112	Tuesday, March 06, 2012	Page: 8

Q17.
A 20 kg ball is travelling in a frictionless track along positive x-direction and its velocity/time graph is shown in Figure 2. The force experienced by the ball at $5^{\text {th }}$ second is:
(Force is taken positive if it acts along positive x-axis)

Answer:

$$
\mathrm{F}=\mathrm{m} \frac{\mathrm{dv}}{\mathrm{dt}}=20\left(\frac{10}{10}\right)=20 \mathrm{~N}
$$

A) 20 N
B) -40 N
C) Zero
D) 5 N
E) -10 N

Q18.
A block of mass 5.0 kg is pushed up in a $\theta=30^{\circ}$ incline plane with a force, F, parallel to a rough plane of coefficient of kinetic friction $\mu_{\mathrm{k}}=0.20$, as shown in Figure 3. What value of F is required to move the block up the plane at constant speed of $v=2.0 \mathrm{~m} / \mathrm{s}$?

Answer:

$$
\begin{aligned}
& \mathrm{ma}=\mathrm{F}-\mathrm{mg} \sin 30^{\circ}-\mu \mathrm{mg} \cos 30^{\circ}=0 \\
& \Rightarrow \mathrm{~F}=\mathrm{mg}\left(\sin 30^{\circ}+\mu \cos 30^{\circ}\right)=5 \times 9.8(0.5+0.2 \times 0.866)=33 \mathrm{~N}
\end{aligned}
$$

A) 33 N
B) 47 N
C) 98 N
D) 42 N
E) 8.5 N

Phys101	First Major	Code: 1
Term: 112	Tuesday, March 06, 2012	Page: 9

Q19.
A car, travelling on a circular horizontal road of radius 200 m , is almost about to slip. If the static coefficient of the road is 0.150 , the speed of the car is:

Answer:

$\mathrm{m} \frac{\mathrm{v}^{2}}{\mathrm{R}}=\mu_{\mathrm{s}} \mathrm{mg} \Rightarrow \mathrm{v}=\sqrt{\mu_{\mathrm{s}} \mathrm{Rg}}=\sqrt{0.15 \times 200 \times 9.8}=17.1 \mathrm{~m} / \mathrm{s}$
A) $17.1 \mathrm{~m} / \mathrm{s}$
B) $294 \mathrm{~m} / \mathrm{s}$
C) $27.3 \mathrm{~m} / \mathrm{s}$
D) $9.45 \mathrm{~m} / \mathrm{s}$
E) $29.4 \mathrm{~m} / \mathrm{s}$

Q20.

Figure 4 shows two masses, of 5.0 kg and 2.0 kg , are tied together with a string that goes over a massless / frictionless pulley. The 5.0 kg body moves over a rough surface with coefficient of kinetic friction μ_{k}. If the system moves with constant speed $2.0 \mathrm{~m} / \mathrm{s}$, find the value of μ_{k}.

Answer:

The tension is the same in both masses, so

$$
2 \mathrm{~g}=5 \mu_{\mathrm{k}} \mathrm{~g} \Rightarrow \mu_{\mathrm{k}}=\frac{2}{5}=0.4
$$

A) 0.40
B) 0.25
C) 0.71
D) 0.31
E) 0.13

