| Phys101                    | First Major-182             | Zero Version |
|----------------------------|-----------------------------|--------------|
| Coordinator: Dr. S. Kunwar | Thursday, February 14, 2019 | Page: 1      |

### Q1.

A position of a particle at time t is given by:  $x = ab(1 - e^{-bt})$ . The dimensions of a and b are, respectively:

A) LT and T<sup>-1</sup> B) LT<sup>-1</sup> and L C) LT<sup>-1</sup> and LT<sup>-1</sup> D) T<sup>-1</sup> and LT<sup>-1</sup> E) MT<sup>-1</sup> and LT<sup>-1</sup> bT = 1

## Ans:

$$b = T^{-1}$$
$$ab = L \Rightarrow a = \frac{L}{b} = LT$$

Q2.

A uniform solid cylinder with a radius of 2.30 cm and a height of 55.0 inches has a mass of 690 g. Find its density. (1 inch = 2.54 cm)

A) 297 kg/m<sup>3</sup>
B) 230 kg/m<sup>3</sup>
C) 145 kg/m<sup>3</sup>
D) 400 kg/m<sup>3</sup>
E) 520 kg/m<sup>3</sup>

$$\rho = \frac{m}{\pi R^2 h} = \frac{690 \ g \times \frac{1 \ kg}{1000 \ g}}{3.14 \times (2.3)^2 \ cm^2 \times \frac{1 \ m^2}{(100)^2 \ cm^2} \times 55 \ in \times \frac{2.54 \ cm}{1 \ in} \times \frac{1 \ m}{100 \ cm}}$$
$$\Rightarrow \rho = 297 \ kg/m^3$$

| Phys101                    | First Major-182             | Zero Version |
|----------------------------|-----------------------------|--------------|
| Coordinator: Dr. S. Kunwar | Thursday, February 14, 2019 | Page: 2      |

# Q3.

A car starts from rest at time t = 0; accelerates at a constant rate of 4.0 m/s<sup>2</sup> in a straight road and reaches a speed of 20 m/s. Then the car slows down at a constant rate until it stops at t = 9.0 s. Find the total distance travelled by the car for the entire motion.

| A) | 90 | m |
|----|----|---|
| B) | 50 | m |
| C) | 60 | m |
| D) | 40 | m |
| E) | 80 | m |

$$v_{01} = 0; v_1 = 20; a_1 = 4 m/s^2$$
  

$$v_1^2 = 2ax_1 + v_{01}^2 \Rightarrow x_1 = \frac{20 \times 20}{2 \times 4} = 50 m$$
  

$$v_1 = v_{01} + at_1 \Rightarrow t_1 = \frac{20}{4} = 5s$$
  

$$t_2 = 9 - 5 = 4 s$$
  

$$v_2 = 0; v_{02} = 20$$
  

$$v_2 = v_{02} + a_2 t_2$$
  

$$a_2 = -\frac{20}{4} = -5s$$
  

$$v_2^2 = v_{02}^2 + 2a_2 x_2 \Rightarrow x_2 = \frac{-20 \times 20}{-2 \times 5} = 40 m$$
  

$$X = X_1 + X_2 = 90 m$$

| Phys101                    | First Major-182             | Zero Version |
|----------------------------|-----------------------------|--------------|
| Coordinator: Dr. S. Kunwar | Thursday, February 14, 2019 | Page: 3      |

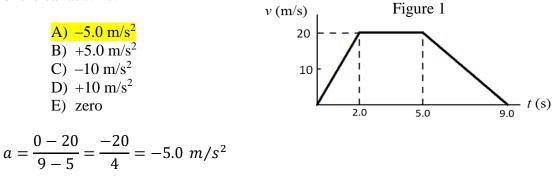
#### Q4.

The coordinate of an object is given as a function of time by  $x = 7t - 4t^2$ , where x is in meters and t is in seconds. The ratio of its instantaneous velocity at t = 2 s to its average velocity over the interval from t = 0 to t = 2 s is:

A) 9
B) 6
C) 1
D) 4
E) 5

#### Ans:

$$x = 7t - 4t^{2}$$


$$v(t) = 7 - 8t \Rightarrow v(2) = 7 - 16 = -9 \ m/s$$

$$v_{av} = \frac{X(2) - X(10)}{2} = \frac{14 - 16 - 0}{2} = \frac{-2}{2} = -1$$

$$\frac{v_{ins}}{v_{av}} = \frac{-9}{-1} = 9$$

### Q5.

The graph in **Figure 1** represents the straight-line motion of a car. Find the acceleration of the car at 7.1 s.



### Q6.

Ans:

The speed of a freely falling particle under the gravity is increasing with time. Its velocity and acceleration are:

| A) negative and negative, respectively |
|----------------------------------------|
| B) negative and positive, respectively |
| C) positive and negative, respectively |
| D) negative and zero, respectively     |
| E) positive and zero, respectively     |
|                                        |

# Ans:

## Α

n, n

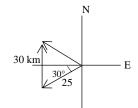
| Phys101                    | First Major-182             | Zero Version |
|----------------------------|-----------------------------|--------------|
| Coordinator: Dr. S. Kunwar | Thursday, February 14, 2019 | Page: 4      |

### **Q7**.

Vector  $\vec{A}$  is in the direction 34.0° clockwise from the negative y-axis. The magnitude of x-component of  $\vec{A}$  is 16.0 m. What is the magnitude of  $\vec{A}$ ?

| A) | <mark>28.6 m</mark> |
|----|---------------------|
| B) | 11.3 m              |
| C) | 15.4 m              |
| D) | 23.8 m              |
| E) | 32.5 m              |
|    |                     |
| .: | 0 1                 |




#### Ans:

$$-A\sin 34^\circ = A_x = 16$$
  
 $|A| = \frac{16}{sin34^\circ} = 28.6$ 

**Q8.** 

Starting from one oasis, a camel walks 25 km in a direction 30° south of west and then walks 30 km toward the north to a second oasis. What is the direction from the first oasis to the second oasis?

A) 51° West of North
B) 33° North of West
C) 27° West of North
D) 12° North of West
E) 45° West of North



$$R_{x} = 25\cos 30^{\circ}$$

$$R_{y} = 30 - 25\sin 30^{\circ}$$

$$\theta = \tan^{-1}\left(\frac{R_{y}}{R_{x}}\right) = 39^{\circ} North of West = (90 - 39) = 51 West of North$$

| Phys101                    | First Major-182             | Zero Version |
|----------------------------|-----------------------------|--------------|
| Coordinator: Dr. S. Kunwar | Thursday, February 14, 2019 | Page: 5      |

## Q9.

If the vector  $\vec{A} = 2.0\hat{i} + 3.0\hat{j}$ , vector  $\vec{B} = 4.0\hat{j} + 3.0\hat{k}$  and vector  $\vec{C} = 5.0\hat{i} - 5.0\hat{k}$ , find the value of  $(\vec{A} \times \vec{B}) \cdot \vec{C}$ .

$$\begin{array}{l}
\textbf{A) 5} \\
\textbf{B) 4} \\
\textbf{C) 2} \\
\textbf{D) 1} \\
\textbf{E) 7} \\
\vec{A} \times \vec{B} = (2\hat{\imath} + 3\hat{\jmath}) \times (4\hat{\jmath} + 3\hat{k}) = 8\hat{k} + 9\hat{\imath} - 6\hat{\jmath} \\
(\vec{A} \times \vec{B}) \cdot \vec{C} = (9\hat{\imath} - 6\hat{\jmath} + 8\hat{k}) \cdot (5\hat{\imath} - 5\hat{k}) = 45 - 40 = 5
\end{array}$$

## Q10.

Ans:

Ans:

Vectors  $\vec{A}$  and  $\vec{B}$  each have magnitude 10 units. If the magnitude of  $(\vec{A} \cdot \vec{B})$  is 50 units. Find the magnitude of  $(\vec{A} \times \vec{B})$ .

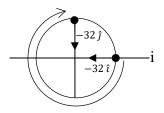
A) 87 B) 55 C) 26 D) 43 E) 38  $|\vec{A}| = 10, |\vec{B}| = 10$   $|\vec{A} \cdot \vec{B}| = |A| |B| \cos\theta$ 50 = 100 cos $\theta$   $\theta = \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$  $|\vec{A} \times \vec{B}| = |A| |B| \sin\theta = 100 \times \sin\left(\frac{\pi}{3}\right) = 86.6$ 

| Phys101                    | First Major-182             | Zero Version |
|----------------------------|-----------------------------|--------------|
| Coordinator: Dr. S. Kunwar | Thursday, February 14, 2019 | Page: 6      |

## Q11.

A plane traveling east at 200 m/s turns and then travels south at 200 m/s. The magnitude of change in its velocity is:

A) 283 m/s B) 200 m/s C) 156 m/s D) 400 m/s E) zero Ans: Considering  $\hat{i} = \text{east and } \hat{j} = \text{North}$   $v_0 = 200 \hat{i} + 0\hat{j}; v = 0\hat{i} - 200 \hat{j}$   $\Delta v = v - v_0 = -200 \hat{j} - 200 \hat{i}$  $|\Delta v| = \sqrt{200^2 + 200^2} = 282.8 \cong 283 \text{ m/s}$ 


### Q12.

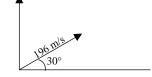
An object is moving on circle in xy-plane with a uniform speed of 8.0 m/s. At time t = 0 its acceleration is  $-32 \text{ m/s}^2 \hat{i}$ . If at around t = 1.2 s (approximate time) its acceleration is  $-32 \text{ m/s}^2 \hat{j}$ , which one of the following statements is **TRUE**?

#### A) The object is going around clockwise direction.

- B) The object is going around counter-clockwise direction.
- C) The velocity and acceleration of the object are along the same direction.
- D) The velocity and position vector of the object are along the same direction.
- E) The position vector and acceleration are perpendicular to each other.

$$\frac{v^2}{R} = a \Rightarrow \frac{64}{32} = R \Rightarrow 2 m$$
$$T = \frac{2\pi R}{v} = 1.6 \Rightarrow t = 1.6 \times \frac{3}{4} = 1.2$$




| Phys101                    | First Major-182             | Zero Version |
|----------------------------|-----------------------------|--------------|
| Coordinator: Dr. S. Kunwar | Thursday, February 14, 2019 | Page: 7      |

### Q13.

A projectile is fired from the leveled ground at an angle of 30.0° above the horizontal with the initial speed of 196 m/s. Find the speed of the projectile when it reaches half of its maximum height. (Ignore air resistance)

## <mark>A) 183 m/s</mark>

- B) 155 m/sC) 109 m/s
- D) 132 m/s
- E) 267 m/s

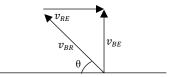


Ans: considering x = horizontal and y = vertical  $v_x = 196 \cos 30^\circ = 169.7; v_{ov} = 196 \sin 30^\circ = 98 m/s$ 

$$v_y = 0$$
  

$$y_{max} = \frac{v_{oy}^2}{2g} = \frac{98 \times 98}{2 \times 9.8} = 490 m$$
  

$$y = \frac{490}{2} = 245 m$$
  


$$v_y^2 = 98^2 - 2 \times 9.8 \times 245 = 69.3 m/s$$
  

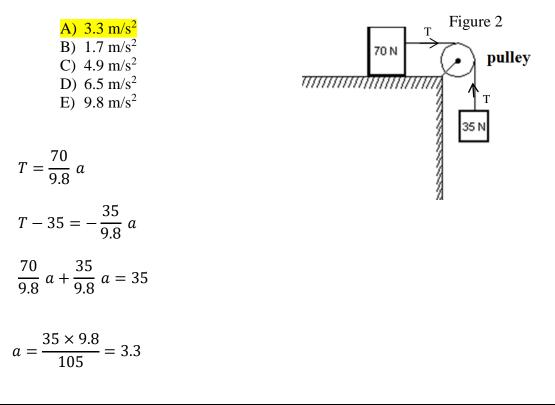
$$|v| = \sqrt{169.7^2 + 69.32} = 183.3 m/s$$

#### Q14.

A 0.20-km wide river has a uniform flow speed of 3.0 m/s toward the east. A boat with a speed of 8.0 m/s relative to the water leaves the south bank and heads in such a way that it crosses to a point directly north of its departure point. How long does it take the boat to cross the river?

A) 27 s B) 30 s C) 45 s D) 60 s E) 70 s Ans: considering x = East and y = North  $v_{BEX} = v_{BRX} + v_{REX}$   $0 = v_{BRX} + 3 \ m/s \Rightarrow v_{BRX} = -3 \ m/s$   $-8cos\theta = 3 \Rightarrow \theta = \cos^{-1}\left(\frac{3}{8}\right)$   $v_{BEY} = v_{BRY} + v_{REY}$   $v_{BE} = 8 \sin\theta = 7.41$  $t = \frac{200}{7.41} = 27 \ s$ 

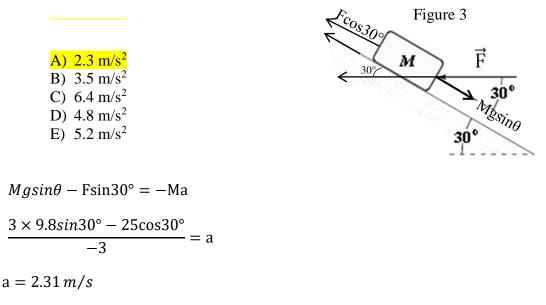



c-20-n-20-s-0-e-0-fg-1-fo-1

| Phys101                    | First Major-182             | Zero Version |
|----------------------------|-----------------------------|--------------|
| Coordinator: Dr. S. Kunwar | Thursday, February 14, 2019 | Page: 8      |

### Q15.

Ans:

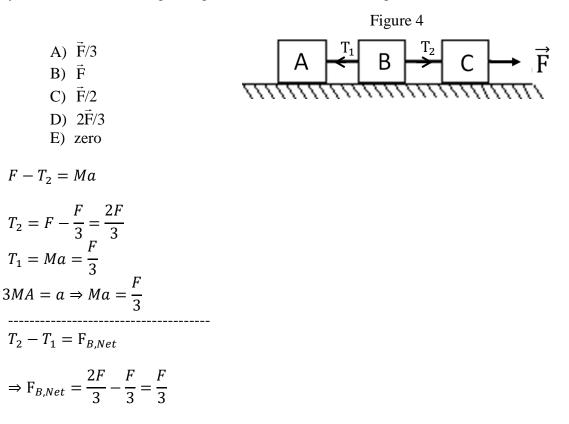

A 70 N block and a 35 N block are connected by a massless string as shown in **Figure 2**. If the pulley is massless-frictionless and the surface is frictionless, the magnitude of the acceleration of the 35-N block is



| Phys101                    | First Major-182             | Zero Version |
|----------------------------|-----------------------------|--------------|
| Coordinator: Dr. S. Kunwar | Thursday, February 14, 2019 | Page: 9      |

#### Q16.

A block is pushed up a frictionless 30° incline by an applied force  $\vec{F}$ , which is parallel to the horizontal as shown in **Figure 3**. If the magnitude of  $\vec{F}$  is 25 N and M = 3.0 kg, what is the magnitude of the resulting acceleration of the block?




#### Q17.

Ans:

Ans:

Three blocks (A, B, C), each having the same mass M, are connected by strings as shown in **Figure 4**. Block C is pulled to the right by a force  $\vec{F}$  that causes the entire system to accelerate. Neglecting friction, the net force acting on block B is:



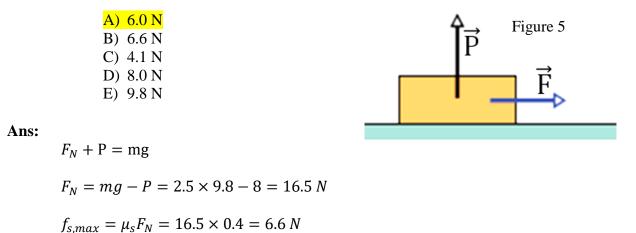
c-20-n-20-s-0-e-0-fg-1-fo-1

| Phys101                    | First Major-182             | Zero Version |
|----------------------------|-----------------------------|--------------|
| Coordinator: Dr. S. Kunwar | Thursday, February 14, 2019 | Page: 10     |

### Q18.

A 0.10 kg stone is tied to the end of a 1.0-m long rope. The stone is moved in a circle in the vertical plane with a constant speed. Which one of the following statements is **TRUE**?

A) The magnitude of the tension at the highest point is minimum


- B) The magnitude of tension at the lowest point is minimum
- C) The magnitude of the tension at the highest point is maximum
- D) The magnitude of tension at the lowest point is zero
- E) The magnitude of tension is same everywhere

## Ans:

Α

# Q19.

A 2.5 kg block is initially at rest on a horizontal surface. A horizontal force  $\vec{F}$  of magnitude 6.0 N and a vertical force  $\vec{P}$  are then applied to the block as shown in **Figure 5**. The coefficients of friction for the block and surface are  $\mu_s = 0.40$  and  $\mu_k = 0.25$ . Determine the magnitude of the frictional force acting on the block if the magnitude of  $\vec{P}$  is 8.0 N



 $f_{s,max} > F, So, f_s = 6N$ 

| Phys101                    | First Major-182             | Zero Version |
|----------------------------|-----------------------------|--------------|
| Coordinator: Dr. S. Kunwar | Thursday, February 14, 2019 | Page: 11     |

# Q20.

Ans:

At what angle should the circular roadway of 50 m radius, be banked to allow cars to round the curve without slipping at 12 m/s? (Ignore friction)



$$Tan\theta = \frac{v^2}{Rg} \Rightarrow \theta = \tan^{-1}\left(\frac{12 \times 12}{50 \times 4.8}\right) = 16.3^{\circ}$$