Q1.
Consider two uniform solid spheres A and B made of the same material and having radii $r_{A}$ and $r_{B}$, respectively. Find the ratio $r_{B} / r_{A}$ if the mass of sphere $B$ is five times the mass of sphere A .
A) 1.7
B) 2.2
C) 2.7
D) 1.2
E) 3.3

Ans:

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{B}}=5 \mathrm{~m}_{\mathrm{A}} \\
& s V_{\mathrm{B}}=5 s \mathrm{~V}_{\mathrm{A}} \Rightarrow \frac{4 \frac{1}{\pi}}{!} \mathrm{R}_{\mathrm{B}}^{3}=5 \frac{4 \frac{1}{3}}{!} \mathrm{R}_{\mathrm{A}}^{3} \\
& \mathrm{R}_{\mathrm{B}}=(5)^{\frac{1}{3}} \mathrm{R}_{\mathrm{A}} \\
& \frac{\mathrm{R}_{\mathrm{B}}}{\mathrm{R}_{\mathrm{A}}}=5^{\frac{1}{3}}=1.71
\end{aligned}
$$

## Q2.

The position x of a particle is given by

$$
x=R t^{3}+\frac{H}{R} t^{2}
$$

where x is in meters and t is in seconds. The dimension of H is
A) $\mathrm{L}^{2} \mathrm{~T}^{-5}$
B) $\mathrm{L}^{3} \mathrm{~T}^{-2}$
C) $\mathrm{LT}^{-2}$
D) $\mathrm{ML}^{-3} \mathrm{~T}^{-2}$

$$
\text { E) } \mathrm{ML} \mathrm{~T}^{-5}
$$

Ans:

$$
\begin{aligned}
{[\mathrm{H}] } & =\frac{\mathrm{L} \times[\mathrm{R}]}{\mathrm{T}^{2}},[\mathrm{R}]=\frac{\mathrm{L}}{\mathrm{~T}^{3}}=\mathrm{LT}^{-3} \\
& =\frac{\mathrm{L} \times \mathrm{LT}^{-3}}{\mathrm{~T}^{2}}=\mathrm{L}^{2} \mathrm{~T}^{-5}
\end{aligned}
$$

Q3.
The velocity of a train is $80.0 \mathrm{~km} / \mathrm{h}$, due west. One and a half hour later its velocity decreases to $65.0 \mathrm{~km} / \mathrm{h}$, due west. What is the train's average acceleration?
A) $10.0 \mathrm{~km} / \mathrm{h}^{2}$ due east
B) $10.0 \mathrm{~km} / \mathrm{h}^{2}$ due west
C) $43.3 \mathrm{~km} / \mathrm{h}^{2}$ due west
D) $43.3 \mathrm{~km} / \mathrm{h}^{2}$ due east
E) $53.3 \mathrm{~km} / \mathrm{h}^{2}$ due east

## Ans:

$$
\mathrm{a}_{\mathrm{avg}}=\frac{65-80}{1.5}=-10 \mathrm{~km} / \mathrm{h}^{2} \text { due west }
$$

## Q4.

A ball moves in a straight line along the x-axis and Figure 1 shows its velocity as a function of time $t$. What is the ball average velocity and average speed, respectively, over a period of 3.00 s.
A) $0.330 \mathrm{~m} / \mathrm{s}, 2.33 \mathrm{~m} / \mathrm{s}$
B) $2.33 \mathrm{~m} / \mathrm{s}, 0.330 \mathrm{~m} / \mathrm{s}$
C) $2.33 \mathrm{~m} / \mathrm{s}, 2.33 \mathrm{~m} / \mathrm{s}$
D) $1.66 \mathrm{~m} / \mathrm{s}, 2.33 \mathrm{~m} / \mathrm{s}$
E) $2.33 \mathrm{~m} / \mathrm{s}, 1.66 \mathrm{~m} / \mathrm{s}$

Ans:

$$
\begin{aligned}
\text { Average Velocity } & =\frac{\Delta \mathrm{x}}{\Delta \mathrm{t}}=\frac{2 \times 2-1 \times 3}{3} \\
& =\frac{4-3}{3}=0.330 \mathrm{~m} / \mathrm{s} \\
\text { Average Speed }= & \frac{\Delta \mathrm{s}}{\Delta \mathrm{t}}=\frac{2 \times 2+1 \times 3}{3} \\
& =\frac{7}{3}=2.33 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Q5.
The position of an object moving along the $x$-axis is given by $x=6.0+6.0 t-3.0 t^{2}$, where $x$ is in meters and $t$ in seconds. Which statement about this object is correct?
A) The object is momentarily at rest at $t=1.0 \mathrm{~s}$.
B) The object position is negative at $\mathrm{t}=0 \mathrm{~s}$.
C) The acceleration of the object is zero at $t=0 \mathrm{~s}$.
D) The acceleration of the object is positive at all times.
E) The object is momentarily at rest at $\mathrm{t}=2.0 \mathrm{~s}$.

Ans:
$x=6+6 t-3 t^{2} m$
$v=\frac{d x}{d f}=6-6 t \mathrm{~m} / \mathrm{s}$
For $v=0,6-6 t=0$, Then $v=0$, at $t=1 \sec$
$\mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}}=-6 \mathrm{~m} / \mathrm{s}^{2}$
$x(t=0)=+6.0 m$

Q6.
A rock is thrown vertically upward from ground level at time $t=0.0 \mathrm{~s}$. At $t=1.5 \mathrm{~s}$ it passes the top of a tall tower, and then 1.0 s later it reaches its maximum height. What is the height of the tower?
A) 26 m
B) 62 m
C) 36 m
D) 16 m
E) 20 m

Ans:
Tower Height $H=v_{\text {iy }} t-\frac{1}{2}{g t^{2}}^{2}$
but $v_{f y}=v_{i y}-g t$
for maximum heigh $v_{f y}=0$, and $t=1.5+1.0=2.5 \mathrm{sec}$
then $v_{i y}=g \times t=9.8 \times 2.5=24.5 \mathrm{~m} / \mathrm{s}$
$\mathrm{H}=\mathrm{v}_{\mathrm{iy}} \mathrm{t}-\frac{1}{2} \mathrm{gt}^{2}$
$\mathrm{v}_{\mathrm{iy}}=24.5 \mathrm{~m} / \mathrm{s}, \mathrm{t}=1.5 \mathrm{sec}$
$H=24.5 \times 1.5-\frac{1}{2} \times 9.8 \times(1.5)^{2}$
$\mathrm{H}=25.7 \mathrm{~m}=26 \mathrm{~m}$

Q7.
A man walks 50 m in a direction $37^{\circ}$ north of east at $5.0 \mathrm{~m} / \mathrm{s}$, then 60 m south at $4.0 \mathrm{~m} / \mathrm{s}$. How long would it take him to get back to his starting point at $5.0 \mathrm{~m} / \mathrm{s}$ by the shortest path?
A) 10 s
B) 15 s
C) 20 s
D) 5.0 s
E) 3.5 s

Ans:
$\Delta \mathrm{x}=50 \cos 37=39.9 \mathrm{~m}$

$\Delta y=50 \sin 37-60=30.09-60=-29.9$
$r=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}=49.9 \mathrm{~m}, \mathrm{t}=\frac{\mathrm{r}}{\mathrm{V}}=\frac{49.9}{5}=9.98 \mathrm{sec}$
Q8.
Vector $\overrightarrow{\mathrm{A}}$ has a magnitude of 35.0 m and makes an angle of $37.0^{\circ}$ with the positive x axis. Find a vector $\overrightarrow{\mathrm{B}}$ that is in the direction opposite to vector $\overrightarrow{\mathrm{A}}$ and is one fifth the magnitude of $\vec{A}$.
A) $-(5.59 \mathrm{~m}) \hat{i}-(4.21 \mathrm{~m}) \hat{j}$
B) $(5.59 \mathrm{~m}) \hat{i}+(4.21 \mathrm{~m}) \hat{j}$
C) $(0.798 \mathrm{~m}) \hat{i}-(0.602 \mathrm{~m}) \hat{j}$
D) $-(1.56 \mathrm{~m}) \hat{i}-(5.06 \mathrm{~m}) \hat{j}$
E) $-(0.798 \mathrm{~m}) \hat{i}+(0.602 \mathrm{~m}) \hat{j}$

## Ans:

$\vec{B}=-\frac{\vec{A}}{5}$
$\overrightarrow{\mathrm{A}}=35 \cos 37 \vec{\imath}+35 \sin 37 \vec{\jmath}$
$\vec{A}=27.95 \vec{\imath}+21.06 \vec{\jmath}$
$\vec{B}=-\frac{1}{5}(27.95 \vec{\imath}+21.06 \vec{\jmath})$
$=-5.59 \vec{\imath}-4.21 \vec{\jmath}$

Q9.
If $\overrightarrow{\mathrm{A}}=2 \hat{i}+3 \hat{j}, \overrightarrow{\mathrm{~B}}=\hat{i}-\hat{j}$ and $\overrightarrow{\mathrm{C}}=\hat{i}+\hat{j}$, find $(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}) \cdot \overrightarrow{\mathrm{C}}$.
A) 0
B) -6
C) +6
D) $-3 \hat{k}$
E) $+2 \hat{i}$

## Ans:

$\mathrm{C}=\vec{\imath}+\vec{\jmath} ; \vec{D}=\vec{A} \times \vec{B}=\vec{k}$
$\vec{D} \cdot \vec{C}=0$

Q10.
The scalar product of vectors $\vec{A}$ and $\vec{B}$ is 6.00 and the magnitude of their vector product is 9.00 . Find the angle between these two vectors.
A) $56.3^{\circ}$
B) $43.0^{\circ}$
C) $23.4^{\circ}$
D) $37.5^{\circ}$
E) $90.0^{\circ}$

## Ans:

$A B \cos \theta=A . B=6,|A \times B|=9.0=A B \sin \theta$
$\tan \theta=\frac{\mathrm{A} \cdot \mathrm{B}}{|\mathrm{A} \times \mathrm{B}|}=\frac{9}{6}=1.5$
$\theta=\tan ^{-1}(1.5)=56.3^{\circ}$

## Q11.

The position of a particle is given by $\vec{r}=\left(4 t-t^{2}\right) \hat{i}+t^{3} \hat{j}$, where $\vec{r}$ is in meters and $t$ in seconds. Find the average acceleration (in $\mathrm{m} / \mathrm{s}^{2}$ ) of the particle in the time interval between $\mathrm{t}=2 \mathrm{~s}$ and $\mathrm{t}=4 \mathrm{~s}$.
A) $-2 \hat{i}+18 \hat{j}$
B) $-4 \hat{i}-6 \hat{j}$
C) $-5 \hat{i}-10 \hat{j}$
D) $-7 \hat{i}-12 \hat{j}$
E) $-10 \hat{i}-6 \hat{j}$

Ans:

$$
\begin{aligned}
& \mathrm{v}=\frac{\mathrm{dr}}{\mathrm{dt}}=(4-2 \mathrm{t}) \hat{\imath}+3 \mathrm{t}^{2} \hat{\jmath} \\
& \mathrm{v}(\mathrm{t}=2 \mathrm{~s})=(4-4) \hat{\imath}+12 \hat{\jmath}=12 \hat{\jmath} \\
& \mathrm{v}(\mathrm{t}=4 \mathrm{~s})=(4-8) \hat{\imath}+48 \hat{\jmath}=-4 \hat{\imath}+48 \hat{\jmath} \\
& \mathrm{a}_{\mathrm{avg}}=\frac{\Delta \mathrm{v}}{\Delta \mathrm{t}}=\frac{-4 \hat{\imath}+48 \hat{\jmath}-12 \hat{\jmath}}{2}=\frac{-4 \hat{\imath}+36 \hat{\jmath}}{2}=-2 \hat{\imath}+18 \hat{\jmath}
\end{aligned}
$$

## Q12.

A projectile is thrown from the ground into the air with an initial speed $\mathrm{v}_{0}$. Its velocity, 1.50 s after it was thrown, is $42.3 \mathrm{~m} / \mathrm{s}$ making an angle $30.4^{0}$ above the horizontal. Determine the initial velocity $\mathrm{v}_{0}$ of the projectile.
A) $51.3 \mathrm{~m} / \mathrm{s}$ at $44.7^{0}$ above the horizontal
B) $43.1 \mathrm{~m} / \mathrm{s}$ at $34.2^{0}$ above the horizontal
C) $21.6 \mathrm{~m} / \mathrm{s}$ at $49.2^{0}$ above the horizontal
D) $32.5 \mathrm{~m} / \mathrm{s}$ at $23.5^{0}$ above the horizontal
E) $12.2 \mathrm{~m} / \mathrm{s}$ at $54.5^{0}$ above the horizontal

Ans:
$\mathrm{v}_{\mathrm{y}}(\mathrm{t}=1.5 \mathrm{sec})=\mathrm{v} \sin \theta=42.3 \sin (30.4)=21.4 \mathrm{~m} / \mathrm{s}$
$v_{0 x}=v \cos \theta=42.3 \cos (30.4)=36.48 \mathrm{~m} / \mathrm{s}$
$v_{0 y}=v_{y}+g t=21.41+9.8 \times 1.5=36.11 \mathrm{~m} / \mathrm{s}$
$\mathrm{v}_{0}=\sqrt{\mathrm{v}_{0 \mathrm{x}}{ }^{2}+\mathrm{v}_{0 \mathrm{y}}{ }^{2}}=\sqrt{36.11^{2}+36.48^{2}}=(51.3 \mathrm{~m}) / \mathrm{s}$,
$\theta=\tan ^{-1}\left(\frac{v_{0 y}}{v_{0 x}}\right)=\tan ^{-1}\left(\frac{36.11}{36.48}\right)=44.7^{\circ}$
Q13.
A 0.150 kg ball, attached to the end of a string, is revolving uniformly in a horizontal circle of radius 0.600 m . The ball makes 10.0 revolutions in 5.00 seconds. Calculate the centripetal acceleration of the ball?
A) $94.8 \mathrm{~m} / \mathrm{s}^{2}$
B) $25.7 \mathrm{~m} / \mathrm{s}^{2}$
C) $12.6 \mathrm{~m} / \mathrm{s}^{2}$
D) $9.81 \mathrm{~m} / \mathrm{s}^{2}$
E) zero

Ans:
$\mathrm{a}=\frac{\mathrm{v}^{2}}{\mathrm{R}} ; \mathrm{v}=\frac{2 \pi \mathrm{R}}{\mathrm{T}} ; \mathrm{T}=\frac{5 \mathrm{sec}}{10 \mathrm{rev}}=\frac{1}{2} \mathrm{sec}$
$v=\frac{2 \pi \times 0.6}{0.5}=7.54 \mathrm{~m} / \mathrm{s}$
$a=\frac{(7.54)^{2}}{0.6}=94.8 \mathrm{~m} / \mathrm{s}$

| Phys101 | First Major-131 | Zero Version |
| :--- | ---: | ---: |
| Coordinator: Dr. A. A. Naqvi | Wednesday, September 25, 2013 | Page: 7 |

## Q14.

A boat is to travel from point A to point B directly across a river. The water in the river flows with a velocity of $1.20 \mathrm{~m} / \mathrm{s}$ toward the west, as shown in Figure 3. If the speed of the boat in still water is $1.85 \mathrm{~m} / \mathrm{s}$, at what angle from the north must the boat head?

Figure \# 3
A) $40.4^{0}$ east of north
B) $30.2^{0}$ west of north
C) $10.5^{0}$ east of north
D) $90.0^{\circ}$ west of north
E) $55.0^{\circ}$ west of north

## Ans:

$\theta=\sin ^{-1}\left(\frac{1.2}{1.85}\right)$
$=40.44^{\circ}$ of north


A


## Q15.

Which one of the curves shown in Figure 2 best represents the vertical component of the velocity $\mathrm{v}_{\mathrm{y}}$ versus time t for a projectile fired at an angle of $45^{\circ}$ above the horizontal?

Figure 2
A) AE
B) AB
C) OC
D) DE
E) AF

## Ans:

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{y}}=\mathrm{v}_{\mathrm{i} y}-\mathrm{gt} \\
& \frac{\partial \mathrm{y}}{\partial \mathrm{t}}=-\mathrm{g} \text {, line with }- \text { ve slope }
\end{aligned}
$$



