Phys101	First Major-183	Zero Version
	Sunday, June 30, 2019	Page: 1

Q1.
A car moves North at a speed of $90 \mathrm{~km} / \mathrm{h}$ for 1 hour. Then it turns East and travel at $110 \mathrm{~km} / \mathrm{h}$ for 3 hours. The car then turns South and travels for 2 hours at $60 \mathrm{~km} / \mathrm{h}$. What is the average speed of the car in the whole interval?
A) $25 \mathrm{~m} / \mathrm{s}$
B) $15 \mathrm{~m} / \mathrm{s}$
C) $35 \mathrm{~m} / \mathrm{s}$
D) $45 \mathrm{~m} / \mathrm{s}$
E) $50 \mathrm{~m} / \mathrm{s}$

Ans:
Total distance: $x=v_{1} t_{1}+v_{2} t_{2}+v_{3} t_{3}=540 \mathrm{~km}$
$S=\frac{x}{t}=\frac{540 \mathrm{~km}}{6 \mathrm{hr}}=25 \mathrm{~m} / \mathrm{s}$
Q2.
The position of a particle is given by the function $x=2.0 t^{3}-9.0 \mathrm{t}^{2}+42$ where x is in meters and t is in seconds. Find the position x when the particle momentarily stops.
A) 15 m
B) 22 m
C) 35 m
D) 12 m
E) 24 m

Ans:
The particle stops when $v=0$

$$
\begin{aligned}
& v=6.0 t^{2}-18 t=0 \Rightarrow t=3.0 \mathrm{~s} \\
& x(t=3.0)=15 \mathrm{~m}
\end{aligned}
$$

Q3.
A car starts moving from rest at a traffic light. It accelerates at $4.0 \mathrm{~m} / \mathrm{s}^{2}$ for 6.0 s . It then travels at constant speed for 20 seconds, and then slows down at a rate of $3.0 \mathrm{~m} / \mathrm{s}^{2}$ to stop at the next traffic light. How far apart are the traffic lights?
A) 650 m
B) 920 m
C) 320 m
D) 740 m
E) 600 m

Ans:

$$
\begin{aligned}
x & =x_{1}+x_{2}+x_{3} \\
& =\frac{1}{2} \times 4 \times 6^{2}+(4 \times 6) \times 20+\left[\frac{(4 \times 6)^{2}-0}{-2 \times(-3.0)}\right]=649 \mathrm{~m}
\end{aligned}
$$

Q4.

A man throws a ball vertically upward from the window of a building with a speed of $15 \mathrm{~m} / \mathrm{s}$. The window is 2.0 m above the ground. How long is the ball in air before it hits the ground?
A) 3.2 s
B) 2.7 s
C) 2.5 s
D) 1.7 s
E) 4.4 s

Ans:

$$
y=v_{0} t-\frac{1}{2} g t^{2} \Rightarrow-2.0=15 t-4.9 t^{2} \Rightarrow t=3.2 \mathrm{~s}
$$

Q5.
Figure 1 shows the velocity graph of a particle moving along the x-axis. Its initial position at $t=0.0$ is $x=2.0 \mathrm{~m}$. What is the position of the particle at $t=2.0 \mathrm{~s}$.

Figure 1
A) 8.0 m
B) 6.0 m
C) 7.0 m
D) 12 m
E) 9.0 m

Ans:

From the plot, slope $=a=3 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

$x-2.0=v_{0} t+\frac{1}{2} a t^{2}=0.0+6.0 \Rightarrow x=8.0 \mathrm{~m}$
Q6.
Ships A and B leave port at the same time. Ship A travels at $20 \mathrm{~km} / \mathrm{h}$ in a direction 30° west of north, while ship B travels 20° east of north at $25 \mathrm{~km} / \mathrm{h}$. What is the distance between the two ships two hours after they depart?
A) 39 km
B) 17 km
C) 22 km
D) 26 km
E) 31 km

Ans:
$\vec{r}_{A}=\vec{v}_{A} t=20[-\sin 30 \hat{\imath}+\cos 30 \hat{\jmath}] \times 2=-20.0 \hat{\imath}+34.6 \hat{\jmath}$
$\vec{r}_{B}=\vec{v}_{B} t=25[\sin 20 \hat{\imath}+\cos 20 \hat{\jmath}] \times 2=17.1 \hat{\imath}+47 \hat{\jmath}$
$R=\left|\vec{r}_{B}-\vec{r}_{A}\right|=39.1 \mathrm{~km}$

Q7.

Vector $\overrightarrow{\mathrm{A}}$ has a magnitude of 12.0 units. Vector $\overrightarrow{\mathrm{B}}$ has a magnitude of 14.0 units. Find the magnitude of $\vec{A} \times \vec{B}$ if $\vec{A} \cdot \vec{B}=67.0$ units.
A) 154 units
B) 122 units
C) 102 units
D) 87.0 units
E) 138 units

Ans:

$\vec{A} \cdot \vec{B}=A B \cos \theta=67 \Rightarrow \theta=66.5^{\circ}$
$\vec{A} \times \vec{B}=A B \sin \theta=12 \times 14 \times \sin 66.5^{\circ}=154$

Q8.

The force $\overrightarrow{\mathrm{F}}$ applied on a charged particle moving in a magnetic field $\overrightarrow{\mathrm{B}}$ is given by the equation $\vec{F}=\mathrm{q} \vec{v} \times \vec{B}$, where:
$\vec{F}=6.0 \hat{i}+30.0 \hat{j}+8 \hat{k}, \vec{v}=2.0 \hat{i}-2.0 \hat{j}+6.0 \hat{k}, \vec{B}=2.0 \hat{i}+2.0 \hat{j}+B_{z} \hat{k}$ and $\mathrm{q}=1$.
Find the value of B_{z}.
A) -9.0
B) -3.0
C) 3.0
D) 6.0
E) 4.0

Ans:
$q \vec{v} \times \vec{B}=\left(-2 B_{z}-12\right) \hat{\imath}-\left(2 B_{z}-12\right) \hat{\jmath}+8 \hat{k}=\vec{F}=6.0 \hat{\imath}+30.0 \hat{\jmath}+8 \hat{k}$
$-2 B_{z}-12=6.0 \Rightarrow B_{z}=-9.0$

Q9.

A ball thrown horizontally at $2.5 \mathrm{~m} / \mathrm{s}$ travels a horizontal distance of 1.6 m before hitting the ground. From what height was the ball thrown?
A) 2.0 m
B) 4.9 m
C) 1.4 m
D) 3.2 m
E) 1.8 m

Ans:

$$
\begin{aligned}
& v_{0 x}=2.5 \frac{\mathrm{~m}}{\mathrm{~s}}, v_{0 y}=0.0 \\
& t=\frac{x}{v_{0 x}}=0.64 \mathrm{~s} \Rightarrow y=v_{0 y} t-\frac{1}{2} g t^{2}=-2.0 \mathrm{~m}
\end{aligned}
$$

Q10.

A student is running to the right at $5 \mathrm{~m} / \mathrm{s}$ as shown in Figure 2. Two balls are thrown towards the student from two opposite directions. The student sees that both balls are approaching him at $10 \mathrm{~m} / \mathrm{s}$. What are the speeds (in units of m / s) of the two balls?
A) $v_{1}=15, v_{2}=-5$

Figure 2
B) $v_{1}=-5, v_{2}=15$
C) $v_{1}=-15, v_{2}=15$
D) $v_{1}=15, v_{2}=15$
E) $v_{1}=5, v_{2}=-5$

Ans:

$$
\begin{aligned}
& v_{1 G}=v_{S G}+v_{1 S}=5+10=15 \mathrm{~m} / \mathrm{s} \\
& v_{2 G}=v_{S G}+v_{2 S}=5-10=-5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Q11.

A 2.0 kg ball swings in a vertical circle on the end of an $80-\mathrm{cm}$ long string. See Figure 3. The tension in the string is 20 N when its angle from the highest point on the circle is 30°. What is the speed of the ball at this position?
A) $3.8 \mathrm{~m} / \mathrm{s}$
B) $2.5 \mathrm{~m} / \mathrm{s}$
C) $2.9 \mathrm{~m} / \mathrm{s}$
D) $3.2 \mathrm{~m} / \mathrm{s}$
E) $3.0 \mathrm{~m} / \mathrm{s}$

Ans:

$$
m g \cos 30^{\circ}+T=m \frac{v^{2}}{r} \Rightarrow T=3.8 \mathrm{~N}
$$

Figure 3

Phys101	First Major-183	Zero Version
	Sunday, June 30, 2019	Page: 5

Q12.

A particle in uniform circular motion about the origin of an xy coordinate system, moving clockwise with a period of 10 s . At one instant, its position vector (measured from the origin) is $\vec{r}=(-4.0 \hat{i}+3.0 \hat{j}) \mathrm{m}$. At that instant, what is the velocity (in m / s) of the particle?
A) $\vec{v}=1.9 \hat{i}+2.5 \hat{j}$
B) $\vec{v}=-2.5 \hat{i}+1.9 \hat{j}$
C) $\vec{v}=-0.4 \hat{i}+0.3 \hat{j}$
D) $\vec{v}=2.5 \hat{i}-1.9 \hat{j}$
E) $\vec{v}=-1.9 \hat{i}-2.5 \hat{j}$

Ans:
$r=5 m, \theta=143^{\circ}$
$v=\frac{2 \pi r}{T}=\pi \frac{m}{s}$
The velocity makes an angle 53° with the horizontal: $v_{x}=v \cos 53=1.9 \mathrm{~m} / \mathrm{s}, v_{y}$ $=2.5 \mathrm{~m} / \mathrm{s}$

Q13.
An iceboat sails across the surface of a frozen lake with constant acceleration produced by the wind. At a certain instant, the boats velocity is $\vec{v}=6.30 \hat{i}-8.42 \hat{j} \mathrm{~m} / \mathrm{s}$. Three seconds later, the boat is instantaneously at rest. What is the average acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) for this 3.00 s interval?
A) $(-2.10 \hat{i}+2.81 \hat{j})$
B) $(2.10 \hat{i}-2.81 \hat{j})$
C) $(2.10 \hat{i}+2.81 \hat{j})$
D) $(-2.10 \hat{i}-2.81 \hat{j})$
E) zero

Ans:

$$
\vec{a}=\frac{\Delta \vec{v}}{t}=(-2,10 \hat{\imath}+2.81 \hat{\jmath}) \mathrm{m} / \mathrm{s}^{2}
$$

Q14.

The system in Figure 4 is initially held at rest where the mass $m_{2}=48 \mathrm{~kg}$ is 3.0 m from the floor. When released, mass m_{2} starts moving downward and reaches the floor in 2.6 s . What is the mass m_{1} ?
A) 40 kg
B) 31 kg
C) 34 kg
D) 37 kg
E) 44 kg

Ans:
$a=\frac{2 y}{t^{2}}=0.89 \mathrm{~m} / \mathrm{s}^{2}$
$T-m_{2} g=-m_{2} a$
$T-m_{1} g=m_{1} a$
$\Rightarrow m_{1}=\frac{g-a}{g+a} m_{1}=40.0 \mathrm{~kg}$

Figure 4

Q15.
The 2.0 kg box in Figure 5 slides down a vertical wall while you push it with a force $\overrightarrow{\boldsymbol{F}}$ at a 30° angle from the horizontal. What magnitude of the force $\overrightarrow{\boldsymbol{F}}$ should you apply to cause the box to slide down at a constant speed? (Assume no friction).
A) 39 N
B) 23 N
C) 12 N
D) 44 N
E) 33 N

Ans:

$$
F \sin 30=m g \Rightarrow F=\frac{m g}{\sin 30}=39.2 \mathrm{~N}
$$

Figure 5

Phys101	First Major-183	Zero Version
	Sunday, June 30, 2019	Page: 7

Q16.

A small car of mass m is pushing a truck of mass $2 m$ that has a dead battery. See Figure 6. Which one of the following statements is TRUE?

Figure 6

A) The car exerts the same amount of force on the truck as the truck exerts on the car
B) The car exerts a force on the truck, but the truck doesn't exert a force on the car
C) The force exerted by the car on the truck is double the force exerted by the truck on the car.
D) The force exerted by the truck on the car is double the force exerted by the car on the truck.
E) The truck exerts a force on the car, but the car doesn't exert a force on the truck

Ans:

A
Q17.
Two blocks, A and B are at rest on a table as shown in Figure 7. The mass of block A is $\quad 1.0 \mathrm{~kg}$. The magnitude of the normal force from the table on block B is 39.2 N . What is the mass (in kg) of block B?

Figure 7
A) 3
B) 1
C) 2
D) 4
E) 5

$F_{N}=\left(m_{A}+m_{B}\right) g=39.2 N \Rightarrow m_{B}=3 \mathrm{~kg}$

Q18.

A 1.5 kg box is placed on a horizontal moving belt. The coefficients of friction between the belt and the box are $\mu_{s}=0.52$ and $\mu_{k}=0.38$. What is the maximum acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) the belt can have without the box slipping?
A) 5.1
B) 3.7
C) 6.2
D) 7.6
E) 6.8

Ans:

The box is accelerated by the force of friction. But when the acceleration of the belt exceeds the corresponding maximum value for the force of friction $f_{s}=\mu_{s} F_{N}$, the box will slip. So max. $a=\mu_{s} F_{N} / m=5.1 \mathrm{~m} / \mathrm{s} 2$

Q19.
Two boxes, A and B, are sliding down the 20° ramp, shown in Figure 8. Box A has a mass of 5.0 kg and a kinetic coefficient of friction 0.2 . Box B has a mass of 10 kg and a coefficient of kinetic friction 0.15 . What is the acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) of block A?
A) 1.8
B) 2.0
C) 1.6
D) 1.5
E) 1.4

Ans:

Figure 8

$$
\begin{aligned}
& \left(m_{1}+m_{2}\right) g \sin 20-g \cos 20\left(\mu_{1} m_{1}+\mu_{2} m_{2}\right)=\left(m_{1}+m_{2}\right) a \\
& a=g \frac{\left(m_{1}+m_{2}\right) g \sin 20-\left(\mu_{1} m_{1}+\mu_{2} m_{2}\right) \cos 20}{\left(m_{1}+m_{2}\right)}=1.8 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Phys101	First Major-183	Zero Version
	Sunday, June 30, 2019	Page: 9

Q20.

A 1500 kg car drives around a flat $200-\mathrm{m}$ radius circular road. What is the coefficient of static friction between the car and the road when the speed is $25 \mathrm{~m} / \mathrm{s}$?
A) 0.32
B) 0.41
C) 0.50
D) 0.54
E) 0.47

Ans:

$f_{s}=\mu_{S} F_{N}=m \frac{v^{2}}{r} \Rightarrow \mu_{s}=\frac{m}{F_{N}} \frac{v^{2}}{r}=\frac{v^{2}}{g r}=0.319$

