Phys101	First Major-183	Zero Version
	Sunday, June 30, 2019	Page: 1

Q1.

A car moves North at a speed of 90 km/h for 1 hour. Then it turns East and travel at 110 km/h for 3 hours. The car then turns South and travels for 2 hours at 60 km/h. What is the average speed of the car in the whole interval?

A)	25 m/s
B)	15 m/s
C)	35 m/s
D)	45 m/s
E)	50 m/s

Ans:

Total distance: $x = v_1 t_1 + v_2 t_2 + v_3 t_3 = 540 \ km$

$$S = \frac{x}{t} = \frac{540 \ km}{6 \ hr} = 25 \ m/s$$

Q2.

The position of a particle is given by the function $x = 2.0t^3 - 9.0t^2 + 42$ where x is in meters and t is in seconds. Find the position x when the particle momentarily stops.

A)	15	<mark>m</mark>
B)	22	m
C)	35	m
D)	12	m
E)	24	m
parti	cle	stops when

Ans:

The particle stops when v = 0

 $v = 6.0 t^2 - 18 t = 0 \implies t = 3.0 s$

x(t = 3.0) = 15 m

Q3.

A car starts moving from rest at a traffic light. It accelerates at 4.0 m/s² for 6.0 s. It then travels at constant speed for 20 seconds, and then slows down at a rate of 3.0 m/s^2 to stop at the next traffic light. How far apart are the traffic lights?

A) 650 m
B) 920 m
C) 320 m
D) 740 m
E) 600 m

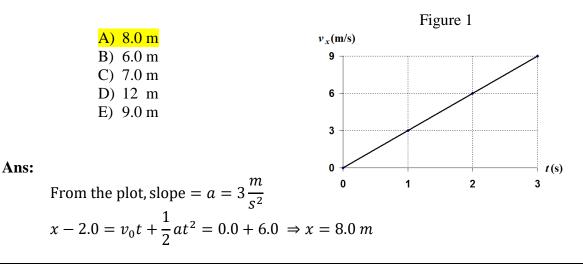
Ans:

 $x = x_1 + x_2 + x_3$

$$= \frac{1}{2} \times 4 \times 6^2 + (4 \times 6) \times 20 + \left[\frac{(4 \times 6)^2 - 0}{-2 \times (-3.0)}\right] = 649 m$$

Phys101	First Major-183	Zero Version
	Sunday, June 30, 2019	Page: 2

Q4.


A man throws a ball vertically upward from the window of a building with a speed of 15 m/s. The window is 2.0 m above the ground. How long is the ball in air before it hits the ground?

Ans:

$$y = v_0 t - \frac{1}{2}gt^2 \Rightarrow -2.0 = 15t - 4.9t^2 \Rightarrow t = 3.2s$$

Q5.

Figure 1 shows the velocity graph of a particle moving along the *x*-axis. Its initial position at t = 0.0 is x = 2.0 m. What is the position of the particle at t = 2.0 s.

Q6.

Ships A and B leave port at the same time. Ship A travels at 20 km/h in a direction 30° west of north, while ship B travels 20° east of north at 25 km/h. What is the distance between the two ships two hours after they depart?

<mark>A) 39 km</mark>

- B) 17 kmC) 22 kmD) 26 km
- E) 31 km

 $\vec{r}_A = \vec{v}_A t = 20[-\sin 30\,\hat{\imath} + \cos 30\,\hat{\jmath}] \times 2 = -20.0\hat{\imath} + 34.6\,\hat{\jmath}$

$$\vec{r}_B = \vec{v}_B t = 25[\sin 20 \,\hat{\imath} + \cos 20 \,\hat{\jmath}] \times 2 = 17.1 \,\hat{\imath} + 47 \,\hat{\jmath}$$

 $R = |\vec{r}_B - \vec{r}_A| = 39.1 \text{ km}$

Phys101	First Major-183	Zero Version
	Sunday, June 30, 2019	Page: 3

Q7.

Vector \vec{A} has a magnitude of 12.0 units. Vector \vec{B} has a magnitude of 14.0 units. Find the magnitude of $\vec{A} \times \vec{B}$ if $\vec{A} \cdot \vec{B} = 67.0$ units.

A) 154 units

- B) 122 units
- C) 102 units
- D) 87.0 units
- E) 138 units

Ans:

$$\vec{A} \cdot \vec{B} = A B \cos \theta = 67 \Rightarrow \theta = 66.5^{\circ}$$

 $\vec{A} \times \vec{B} = AB \sin \theta = 12 \times 14 \times \sin 66.5^{\circ} = 154$

Q8.

The force \vec{F} applied on a charged particle moving in a magnetic field \vec{B} is given by the equation $\vec{F} = q \vec{v} \times \vec{B}$, where:

 $\vec{F} = 6.0\hat{i} + 30.0\hat{j} + 8\hat{k}$, $\vec{v} = 2.0\hat{i} - 2.0\hat{j} + 6.0\hat{k}$, $\vec{B} = 2.0\hat{i} + 2.0\hat{j} + B_z\hat{k}$ and q = 1. Find the value of B_z .

A) -9.0 B) -3.0 C) 3.0 D) 6.0 E) 4.0

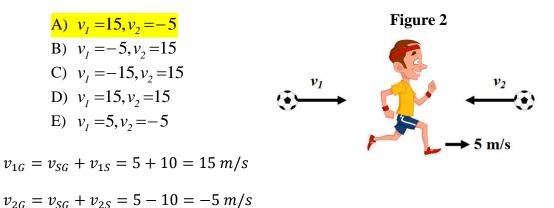
Ans:

$$q\vec{v} \times \vec{B} = (-2B_z - 12)\hat{\imath} - (2B_z - 12)\hat{\jmath} + 8\hat{k} = \vec{F} = 6.0\hat{\imath} + 30.0\hat{\jmath} + 8\hat{k}$$

 $-2B_z - 12 = 6.0 \Rightarrow B_z = -9.0$

Q9.

A ball thrown horizontally at 2.5 m/s travels a horizontal distance of 1.6 m before hitting the ground. From what height was the ball thrown?

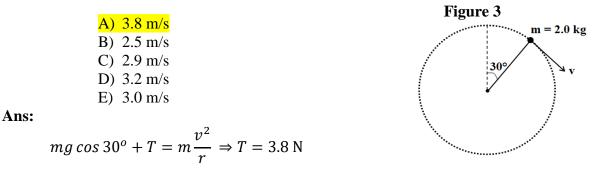

A)	2.0 m
B)	4.9 m
C)	1.4 m
D)	3.2 m
E)	1.8 m

$$v_{0x} = 2.5 \frac{m}{s}, v_{0y} = 0.0$$

 $t = \frac{x}{v_{0x}} = 0.64 \ s \Rightarrow y = v_{0y}t - \frac{1}{2}gt^2 = -2.0 \ m$

Phys101	First Major-183	Zero Version
	Sunday, June 30, 2019	Page: 4

Q10.


A student is running to the right at 5 m/s as shown in **Figure 2**. Two balls are thrown towards the student from two opposite directions. The student sees that both balls are approaching him at 10 m/s. What are the speeds (in units of m/s) of the two balls?

Q11.

Ans:

A 2.0 kg ball swings in a vertical circle on the end of an 80-cm long string. See **Figure 3**. The tension in the string is 20 N when its angle from the highest point on the circle is 30° . What is the speed of the ball at this position?

Phys101	First Major-183	Zero Version
	Sunday, June 30, 2019	Page: 5

Q12.

A particle in uniform circular motion about the origin of an xy coordinate system, moving clockwise with a period of 10 s. At one instant, its position vector (measured from the origin) is $\vec{r} = (-4.0\hat{i} + 3.0\hat{j})$ m. At that instant, what is the velocity (in m/s) of the particle?

A) $\vec{v} = 1.9\hat{i} + 2.5\hat{j}$ B) $\vec{v} = -2.5\hat{i} + 1.9\hat{j}$ C) $\vec{v} = -0.4\hat{i} + 0.3\hat{j}$ D) $\vec{v} = 2.5\hat{i} - 1.9\hat{j}$ E) $\vec{v} = -1.9\hat{i} - 2.5\hat{j}$

Ans:

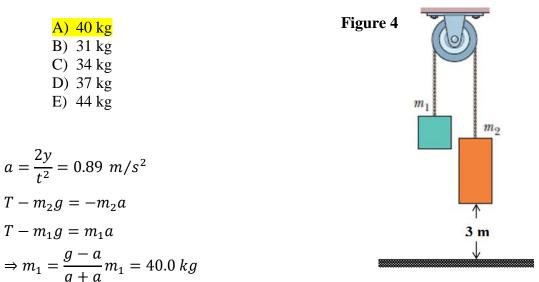
$$r = 5 m, \theta = 143^{o}$$
$$v = \frac{2\pi r}{T} = \pi \frac{m}{s}$$

The velocity makes an angle 53° with the horizontal: $v_x = v \cos 53 = 1.9 m/s$, $v_y = 2.5 m/s$

Q13.

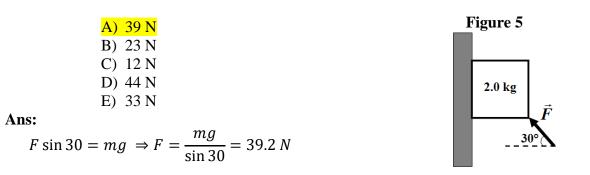
An iceboat sails across the surface of a frozen lake with constant acceleration produced by the wind. At a certain instant, the boats velocity is $\vec{v} = 6.30\hat{i} - 8.42\hat{j}$ m/s. Three seconds later, the boat is instantaneously at rest. What is the average acceleration (in m/s²) for this 3.00 s interval?

A) $(-2.10\hat{i} + 2.81\hat{j})$ B) $(2.10\hat{i} - 2.81\hat{j})$ C) $(2.10\hat{i} + 2.81\hat{j})$ D) $(-2.10\hat{i} - 2.81\hat{j})$ E) zero


$$\vec{a} = \frac{\Delta \vec{v}}{t} = (-2, 10 \ \hat{\iota} + 2.81 \ \hat{j}) \ \text{m/s}^2$$

Phys101	First Major-183	Zero Version
	Sunday, June 30, 2019	Page: 6

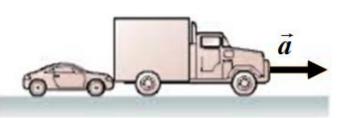
Q14.


Ans:

The system in **Figure 4** is initially held at rest where the mass $m_2 = 48$ kg is 3.0 m from the floor. When released, mass m_2 starts moving downward and reaches the floor in 2.6 s. What is the mass m_1 ?

Q15.

The 2.0 kg box in **Figure 5** slides down a vertical wall while you push it with a force \vec{F} at a 30° angle from the horizontal. What magnitude of the force \vec{F} should you apply to cause the box to slide down at a constant speed? (Assume no friction).



Phys101	First Major-183	Zero Version
	Sunday, June 30, 2019	Page: 7

Q16.

A small car of mass m is pushing a truck of mass 2m that has a dead battery. See **Figure** 6. Which one of the following statements is **TRUE**?

- A) The car exerts the same amount of force on the truck as the truck exerts on the car
- B) The car exerts a force on the truck, but the truck doesn't exert a force on the car
- C) The force exerted by the car on the truck is double the force exerted by the truck on the car.
- D) The force exerted by the truck on the car is double the force exerted by the car on the truck.
- E) The truck exerts a force on the car, but the car doesn't exert a force on the truck

Ans:

Α

Q17.

Two blocks, A and B are at rest on a table as shown in **Figure 7**. The mass of block A is 1.0 kg. The magnitude of the normal force from the table on block B is 39.2 N. What is the mass (in kg) of block B?

Ans:

 $F_N = (m_A + m_B)g = 39.2 N \Rightarrow m_B = 3 kg$

Phys101	First Major-183	Zero Version
	Sunday, June 30, 2019	Page: 8

Q18.

A 1.5 kg box is placed on a horizontal moving belt. The coefficients of friction between the belt and the box are $\mu_s = 0.52$ and $\mu_k = 0.38$. What is the maximum acceleration (in m/s²) the belt can have without the box slipping?

A) 5.1
B) 3.7
C) 6.2
D) 7.6
E) 6.8

Ans:

The box is accelerated by the force of friction. But when the acceleration of the belt exceeds the corresponding maximum value for the force of friction $f_s = \mu_s F_N$, the box will slip. So max. $a = \mu_s F_N/m = 5.1 \text{ m/s2}$

Q19.

Two boxes, A and B, are sliding down the 20° ramp, shown in **Figure 8**. Box A has a mass of 5.0 kg and a kinetic coefficient of friction 0.2. Box B has a mass of 10 kg and a coefficient of kinetic friction 0.15. What is the acceleration (in m/s²) of block A?

$$(m_1 + m_2)g\sin 20 - g\cos 20 \ (\mu_1 m_1 + \mu_2 m_2) = (m_1 + m_2)a$$
$$a = g \frac{(m_1 + m_2)g\sin 20 - (\mu_1 m_1 + \mu_2 m_2)\cos 20}{(m_1 + m_2)} = 1.8 \ m/s^2$$

Phys101	First Major-183	Zero Version
	Sunday, June 30, 2019	Page: 9

Q20.

A 1500 kg car drives around a flat 200-m radius circular road. What is the coefficient of static friction between the car and the road when the speed is 25 m/s?

A) 0.32
B) 0.41
C) 0.50
D) 0.54
E) 0.47

$$f_s = \mu_s F_N = m \frac{v^2}{r} \Rightarrow \mu_s = \frac{m}{F_N} \frac{v^2}{r} = \frac{v^2}{gr} = 0.319$$