Q1.

Work is defined as the scalar product of force and displacement. Power is defined as the rate of change of work with time. The dimension of power is:
A) $\mathrm{ML}^{2} \mathrm{~T}^{-3}$
B) $\mathrm{M}^{2} \mathrm{~L}^{2} \mathrm{~T}^{3}$
C) $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
D) $\mathrm{M}^{2} \mathrm{~L}^{2} \mathrm{~T}^{2}$
E) $\mathrm{ML}^{-1} \mathrm{~T}^{-1}$

Ans:

$P=\frac{W}{t}=\frac{F \Delta X}{t}=\frac{M L}{T^{2}} \frac{L}{T}=M L^{2} T^{-3}$

Q2.

A bullet is fired through a wooden board, 5.52 inches thick, with its line of motion perpendicular to the face of the board. If it enters with a speed of $450 \mathrm{~m} / \mathrm{s}$ and emerges with a speed of $220 \mathrm{~m} / \mathrm{s}$, what is the bullet's acceleration as it passes through the board? (Assume the acceleration is constant and take 1 inch $=2.54 \mathrm{~cm}$.)
A) $-550 \mathrm{~km} / \mathrm{s}^{2}$
B) $+360 \mathrm{~km} / \mathrm{s}^{2}$
C) $-360 \mathrm{~km} / \mathrm{s}^{2}$
D) $+550 \mathrm{~km} / \mathrm{s}^{2}$
E) $+275 \mathrm{~km} / \mathrm{s}^{2}$

Ans:

$$
\begin{aligned}
& v^{2}=v_{0}^{2}+2 a \Delta x \\
& a=\frac{v^{2}-v_{0}^{2}}{2 \Delta x}=\frac{(250)^{2}-(450)^{2}}{2 \times 5.52 \times 2.54 \times 10^{-2}}=550 \mathrm{~km} / \mathrm{s}^{2}
\end{aligned}
$$

Q3.
A person pushes a cart along a straight track. The velocity of the cart changes over time as shown in Figure 1. What is the average acceleration of the cart between $t=2 \mathrm{~s}$ and $\mathrm{t}=7 \mathrm{~s}$?
A) $-2.0 \mathrm{~m} / \mathrm{s}^{2}$
B) $-3.5 \mathrm{~m} / \mathrm{s}^{2}$
C) $+2.0 \mathrm{~m} / \mathrm{s}^{2}$
D) $+3.5 \mathrm{~m} / \mathrm{s}^{2}$
E) zero

Ans:
$a=\frac{\Delta v}{\Delta t}=\frac{v(7)-v(2)}{7-2}$

$a=\frac{-5-5}{5}=\frac{-10}{5}=-2 \mathrm{~m} / \mathrm{s}^{2}$

Q4.
A rock is dropped vertically down from rest from the top of a $100-\mathrm{m}$ high building. At what time and with what speed will the rock reach 50.0 m below the top of the building? (Ignore air resistance)
A) $3.18 \mathrm{~s}, 31.3 \mathrm{~m} / \mathrm{s}$
B) $1.50 \mathrm{~s}, 19.8 \mathrm{~m} / \mathrm{s}$
C) $4.36 \mathrm{~s}, 24.5 \mathrm{~m} / \mathrm{s}$
D) $3.18 \mathrm{~s}, 11.6 \mathrm{~m} / \mathrm{s}$
E) $9.80 \mathrm{~s}, 59.1 \mathrm{~m} / \mathrm{s}$

Ans:

$$
\begin{aligned}
& v_{0}=0 \\
& \Delta y=-50 \mathrm{~m} \\
& a=-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& \Delta y=\frac{1}{2} a t^{2} \\
& t=\sqrt{\frac{2 \Delta y}{a}}=\sqrt{\frac{2 \times(-50)}{-9.8}}=3.2 \mathrm{~s} \\
& v^{2}=v_{0}^{2}+2 a \Delta y \\
& v=\sqrt{2 a \Delta y}=\sqrt{2 \times(-9.8)(-50)}=31.3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Q5.
The position of a particle moving along the x axis is given by: $x=2.0+6.0 t^{2}-2.0 t^{3}$ (in SI units). Find the magnitude of the acceleration at the instant when the particle reaches the maximum position along the positive x -axis.
A) $12 \mathrm{~m} / \mathrm{s}^{2}$
B) $6.0 \mathrm{~m} / \mathrm{s}^{2}$
C) $24 \mathrm{~m} / \mathrm{s}^{2}$
D) $18 \mathrm{~m} / \mathrm{s}^{2}$
E) zero

Ans:
$x=2+6 t^{2}-2 t^{3}$
$v(t)=\frac{d x}{d t}=12 t-6 t^{2}$
At maximum position, $v(t)=0$
$12 t-6 t^{2}=0 \Rightarrow t=2 s$
$a(t)=\frac{d v(t)}{d t}=12-12 t$
$a(2)=12-12 \times 2=-12 \mathrm{~m} / \mathrm{s}^{2}$
$a(2)=12 \mathrm{~m} / \mathrm{s}^{2}$

Q6.
A vector $\overrightarrow{\boldsymbol{F}}$ is given as $\overrightarrow{\boldsymbol{F}}=q(\overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{B}})$, where $\overrightarrow{\boldsymbol{v}}$ is perpendicular to $\overrightarrow{\boldsymbol{B}}$. In which of the situations, shown in Figure 2, is the direction of $\overrightarrow{\boldsymbol{B}}$ in the positive z-axis if q is a positive constant?

Figure 2
A) 2 and 3 only
B) 1 only
C) 2 only
D) 3 only
E) 1 and 3 only

Ans:

(1)

(2)

(3)
$\boldsymbol{F}=q(\boldsymbol{v} \times \boldsymbol{B})$
For (3): $\quad-\hat{\jmath}=+(\hat{\imath} \times \hat{k})$
For (2): $\quad \hat{\jmath}=(-\hat{\imath} \times \hat{k})$

Q7.
The three vectors in Figure 3 have magnitudes $a=3.00 \mathrm{~m}, b=4.00 \mathrm{~m}$, and $c=10.0$ m and angle $\theta=30.0^{\circ}$. If $\overrightarrow{\boldsymbol{c}}=p \overrightarrow{\boldsymbol{a}}+q \overrightarrow{\boldsymbol{b}}$, what are the values of p and q, respectively?
A) -6.66 and 4.33
B) -5.00 and 8.66
C) 3.00 and -5.00
D) -2.44 and -3.55
E) 12.5 and 9.86

Ans:
$\vec{a}=3 \hat{\imath}$
$\vec{b}=4 \cos 30^{\circ} \hat{\imath}+4 \sin 30^{\circ} \hat{\jmath}$
$\vec{c}=-10 \cos 60^{\circ} \hat{\imath}+10 \sin 60^{\circ} \hat{\jmath}$

$\vec{c}=p \vec{a}+q \vec{b}$
$c_{x}=p a_{x}+q b_{x}$
$-10 \cos 60^{\circ}=3 p+4 q \cos 30^{\circ}$
$3 p+2 \sqrt{3} q+5=0$
$c_{y}=p a_{y}+9 b_{y}$
$10 \sin 60^{\circ}=4 q \sin 30^{\circ}$
$5 \sqrt{3}=2 q$
$q=4.33$
Using value of q in equation (1)
$p=-6.66$

Q8.
Starting from origin O, a camel walks 25 km south of west $\left(\overrightarrow{\boldsymbol{d}}_{\boldsymbol{I}}\right)$ and reaches to point A as shown in Figure 4. Then it walks 30 km directly up to the north $\left(\overrightarrow{\boldsymbol{d}}_{2}\right)$ and reaches to
point B. If point B is 28 km away from the origin, find the angle (θ) between $\overrightarrow{\boldsymbol{d}}_{1}$ and $\overrightarrow{\boldsymbol{d}}_{2}$
A) 120°
B) 150°
C) 105°
D) 130°
E) 159°

Ans:

$$
\begin{aligned}
& \left(\vec{d}_{1}+\vec{d}_{2}\right) \cdot\left(\vec{d}_{1}+\vec{d}_{2}\right)=\left|\overrightarrow{d_{1}}+\overrightarrow{d_{2}}\right|^{2} \\
& \left|\overrightarrow{d_{1}}\right|^{2}+2\left|\overrightarrow{d_{1}}\right|\left|\overrightarrow{d_{2}}\right| \cos \theta+\left|\overrightarrow{d_{2}}\right|^{2}=\left|\overrightarrow{d_{1}}+\overrightarrow{d_{2}}\right|^{2} \\
& (25)^{2}+2 \times 25 \times 30 \cos \theta+(30)^{2}=28^{2} \\
& \theta=\cos ^{-1}\left(\frac{28^{2}-25^{2}-30^{2}}{2 \times 25 \times 30}\right)=120^{\circ}
\end{aligned}
$$

Figure 4

Q9.

A particle moves in the $x y$ plane, starting from the origin at $t=0$ with an initial velocity $\vec{v}_{0}=20.0 \hat{i}-3.00 \hat{j}$, where the unit of velocity is m / s. The particle experiences an acceleration in the x direction only that is given by $a_{x}=-4.00 \mathrm{~m} / \mathrm{s}^{2}$. Find the magnitude of its average velocity from $t=0$ to $t=5.00 \mathrm{~s}$.
A) $10.4 \mathrm{~m} / \mathrm{s}$
B) $15.7 \mathrm{~m} / \mathrm{s}$
C) $22.5 \mathrm{~m} / \mathrm{s}$
D) $35.1 \mathrm{~m} / \mathrm{s}$
E) $46.3 \mathrm{~m} / \mathrm{s}$

Ans:

$$
\begin{aligned}
& \Delta x(t)=v_{0 x} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2} \\
& \Delta x(5)=20 \times 5-\frac{1}{2} \times 4 \times 5^{2}=50 \mathrm{~m} \\
& \Delta y(5)=v_{0 y} \Delta t=-3 \times 5=-15 \mathrm{~m} \\
& v_{a v}=\frac{\Delta x}{\Delta t} \hat{\imath}+\frac{\Delta y}{\Delta t} \hat{\jmath}=\frac{50}{5} \hat{\imath}-\frac{15}{5} \hat{\jmath}=10 \hat{\imath}-3 \hat{\jmath} \\
& \left|v_{a v}\right|=\sqrt{10^{2}+3^{2}}=10.4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Q10.

The pilot of an aircraft flies due north relative to the ground in a wind blowing at 40 km / h toward the east. If his speed relative to the ground is $80 \mathrm{~km} / \mathrm{h}$, what is the velocity of his airplane relative to the air? (Considering $\hat{\boldsymbol{i}}=$ East and $\hat{\boldsymbol{j}}=$ North $)$
A) $-40 \hat{\boldsymbol{i}}+80 \hat{\boldsymbol{j}}(\mathrm{~km} / \mathrm{h})$
B) $-40 \hat{\boldsymbol{i}}-80 \hat{\boldsymbol{j}}(\mathrm{~km} / \mathrm{h})$
C) $40 \hat{i}+80 \hat{j}(\mathrm{~km} / \mathrm{h})$
D) $40 \hat{i}-80 \hat{j}(\mathrm{~km} / \mathrm{h})$
E) $40 \hat{i}+40 \hat{j}(\mathrm{~km} / \mathrm{h})$

Ans:
$v_{A E}=80 \hat{\jmath}$
$v_{W E}=40 \hat{\imath}$

$W=$ Wind
$A=$ Airplane
$E=$ Earth
$v_{A W}=v_{A E}-v_{W E}$
$v_{A W}=80 \hat{\jmath}-40 \hat{\imath}=-40 \hat{\imath}+80 \hat{\jmath}(\mathrm{~km} / \mathrm{h})$
Q11.
An Earth satellite moves in a circular orbit of radius 7010 km with a period of 98 min . What is the magnitude of the centripetal acceleration of the satellite?
A) $8.0 \mathrm{~m} / \mathrm{s}^{2}$
B) $5.0 \mathrm{~m} / \mathrm{s}^{2}$
C) $3.0 \mathrm{~m} / \mathrm{s}^{2}$
D) $2.0 \mathrm{~m} / \mathrm{s}^{2}$
E) $4.0 \mathrm{~m} / \mathrm{s}^{2}$

Ans:
$v=\frac{2 \pi R}{T}$

Radius of Earth $=6340 \mathrm{~km}$
$a=\frac{v^{2}}{R}=\frac{4 \pi^{2} R^{2}}{T^{2} R}=\frac{4 \pi^{2} R}{T^{2}}$
$a=\frac{4 \times 3.14^{2} \times 7010 \times 10^{3}}{98 \times 60}=8 \mathrm{~m} / \mathrm{s}^{2}$

Q12.

A stone is thrown from the top of a building at an angle of 30° above the horizontal with an initial speed of $20 \mathrm{~m} / \mathrm{s}$. The height from which the stone is thrown is 45 m above the ground. What is the final speed of the stone just before it hits the ground? (Ignore air resistance)
A) $36 \mathrm{~m} / \mathrm{s}$
B) $20 \mathrm{~m} / \mathrm{s}$
C) $15 \mathrm{~m} / \mathrm{s}$
D) $43 \mathrm{~m} / \mathrm{s}$
E) $54 \mathrm{~m} / \mathrm{s}$

Ans:
$v_{0}=20 \mathrm{~m} / \mathrm{s}$
$v_{x}=20 \cos 30^{\circ}=17.3 \mathrm{~m} / \mathrm{s}$ (constant)
$v_{0 y}=20 \sin 30^{\circ}=10 \mathrm{~m} / \mathrm{s}$
$a=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\Delta y=-45 m$
$v_{y}=\sqrt{v_{o y}^{2}+2 a \Delta y}=31.3 \mathrm{~m} / \mathrm{s}$
$|v|=\sqrt{v_{x}^{2}+v_{y}^{2}}=35.8 \mathrm{~m} / \mathrm{s}$

Q13.

Two blocks of masses 2.0 kg and 3.0 kg move on a horizontal frictionless surface and are subjected to two horizontal forces of magnitudes 25 N and 5.0 N , respectively, as shown in Figure 5. What is the magnitude of the force exerted by block 2 on block 1?

Figure 5
A) 17 N
B) 21 N
C) 29 N
D) 37 N
E) 11 N

Ans:

$25-5=5 a \Rightarrow a=4 \mathrm{~m} / \mathrm{s}^{2}$

$25-F_{12}=2 a \Rightarrow F_{12}=25-2 \times 4=17 N$

Q14.

A block is projected up a frictionless inclined plane with initial speed $v_{o}=3.50 \mathrm{~m} / \mathrm{s}$. The angle of the inclined plane is $\theta=32.0^{\circ}$. How far up the plane does the block go?
A) 1.18 m
B) 2.91 m
C) 5.27 m
D) 6.34 m
E) 3.75 m

Ans:

$$
\begin{aligned}
& v=0 \\
& a=-9.8 \sin 32^{\circ} \\
& v_{0}=3.5 \\
& \Delta l=? \\
& y^{22}=v_{0}^{2}+2 a \Delta l \\
& \Delta l=-\frac{v_{0}^{2}}{2 a}=\frac{3.5^{2}}{2 \times 9.8 \sin 32}=1.18 \mathrm{~m}
\end{aligned}
$$

Q15.

Using a rope that will break completely if the tension in it exceeds 600 N , you need to lift vertically a block weighing 449 N from the ground. What magnitude of acceleration will put the rope on the verge of breaking?
A) $3.3 \mathrm{~m} / \mathrm{s}^{2}$
B) $1.4 \mathrm{~m} / \mathrm{s}^{2}$
C) $7.5 \mathrm{~m} / \mathrm{s}^{2}$
D) $4.6 \mathrm{~m} / \mathrm{s}^{2}$
E) $9.1 \mathrm{~m} / \mathrm{s}^{2}$

Ans:

$$
\begin{aligned}
& T-m g=m a \\
& a=\frac{600-449}{(449 / 9.8)}=3.3 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Q16.

A block slides on a frictionless horizontal surface under the action of two forces, as shown in Figure 6. If $\boldsymbol{F}=20 \mathrm{~N}$ and $M=5.0 \mathrm{~kg}$, find the magnitudes of the resulting acceleration of the block and the normal force on the block, respectively.
A) $7.5 \mathrm{~m} / \mathrm{s}^{2}$ and 59 N
B) $7.5 \mathrm{~m} / \mathrm{s}^{2}$ and 84 N
C) $4.5 \mathrm{~m} / \mathrm{s}^{2}$ and 47 N
D) $4.5 \mathrm{~m} / \mathrm{s}^{2}$ and 59 N
E) $3.0 \mathrm{~m} / \mathrm{s}^{2}$ and 84 N

Ans:

$$
\begin{aligned}
F_{N} & =m g+F \sin 30^{\circ} \\
& =5 \times 9.8+20 \sin 30^{\circ} \\
& =49+10=59 \mathrm{~N} \\
& F+F \cos 30^{\circ}=m a \\
& \quad \begin{array}{l}
a 0\left(1+\frac{\sqrt{3}}{2}\right) \\
5
\end{array}=7.5 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Q17.

A massless rope passes over a massless and frictionless pulley suspended from the ceiling as shown in Figure 7. A block of mass $m_{l}=4 \mathrm{~kg}$ is attached to one end, and another block of mass $m_{2}=5 \mathrm{~kg}$ is attached to the other end. The acceleration of the 5kg block is:
A) $g / 9$

B) $5 g / 9$
C) $4 g / 9$
D) $g / 5$
E) $g / 4$

Ans:
$T-m_{1} g=m_{1} a \Rightarrow T=m_{1}(a+g)$
$T-m_{2} g=-m_{2} a \Rightarrow T=m_{2}(g-a)$
$m_{1} a+m_{1} g=m_{2} g-m_{2} a$
$\left(m_{1}+m_{2}\right) a=\left(m_{2}-m_{1}\right) g$
$a=\frac{\left(m_{2}-m_{1}\right)}{\left(m_{1}+m_{2}\right)} g=\left(\frac{5-4}{5+4}\right) g=\frac{g}{9}$

Figure 7

Q18.

A crate rests on a rough horizontal surface and a person pulls on it with a $10-\mathrm{N}$ force. No matter what the orientation of the force, the crate does not move. Rank the situations shown in Figure 8 according to the magnitude of the frictional force of the surface on the crate, least to greatest.

Figure 8

A) $3,2,1$
B) $1,2,3$
C) $2,1,3$
D) $3,1,2$
E) All tie

Ans:

Force of firction $f=\mu F_{N} \Rightarrow f \propto F_{N}$
Case 1: $F_{N}=m g$
Case 2: $F_{N}+10 \sin \theta=m g \Rightarrow F_{N}=(m g-10 \sin \theta)$
case 3: $F_{N}+10=m g \Longrightarrow F_{N}=m g-10$

Q19.

A coin placed 30.0 cm from the center of a rotating horizontal turntable slips when its speed reaches $50.0 \mathrm{~cm} / \mathrm{s}$. What is the coefficient of static friction between the coin and the turntable?
A) 0.085
B) 0.027
C) 0.045
D) 0.064
E) 0.019

Ans:
$f-\frac{m v^{2}}{r}=0$ when slips
$\mu_{s} m g-\frac{m v^{2}}{r}=0$
$\mu_{s}=\frac{v^{2}}{r g}=\frac{\left(50 \times 10^{-2}\right)^{2}}{\left(30 \times 10^{-2} \times 9.8\right)}=0.085$

Phys101	First Major-172	Zero Version
Coordinator: Dr. S. Kunwar	Monday, March 05, 2018	Page: 11

Q20.

In Figure 9, block 1 of mass $m_{1}=2.0 \mathrm{~kg}$ and block 2 of mass $m_{2}=1.0 \mathrm{~kg}$ are connected by a string of negligible mass. Block 2 is pushed by a force of magnitude 20 N making an angle $\theta=35^{\circ}$ as shown. The coefficient of kinetic friction between each block and the horizontal surface is 0.20 . What is the tension in the string?
A) 9.4 N
B) 6.2 N
C) 2.5 N
D) 7.1 N
E) 4.7 N

Ans:

$$
\begin{aligned}
& \stackrel{f_{1}}{T-f_{1}=m_{1} a} \\
& T-\mu_{k} m_{1} g=m_{1} a \\
& a=\frac{T-0.2 \times 2 \times 9.8}{2}=\frac{T}{2}-1.96 \\
& \quad f_{2} \\
& F \cos \theta-f_{2}-T=m_{2} a \\
& 20 \cos 35^{\circ}-\mu_{k} F_{N 2}-T=m_{2} a \\
& 20 \cos 35^{\circ}-0.2\left(m_{2} g+F \sin 35^{\circ}\right)=m_{2} a+T \\
& 1 \times\left(\frac{T}{2}-1.98\right)+T=20 \cos 35^{\circ}-0.2\left(1 \times 9.8+20 \sin 35^{\circ}\right) \\
& T=9.4 N
\end{aligned}
$$

