Phys101	First Major-172	Zero Version
Coordinator: Dr. S. Kunwar	Monday, March 05, 2018	Page: 1

Q1.

Work is defined as the scalar product of force and displacement. Power is defined as the rate of change of work with time. The dimension of power is:

A) ML^2T^{-3} B) $M^2L^2T^3$ C) $ML^{-1}T^{-2}$ D) $M^2L^2T^2$ E) $ML^{-1}T^{-1}$

Ans:

$$P = \frac{W}{t} = \frac{F\Delta X}{t} = \frac{ML}{T^2} \frac{L}{T} = ML^2 T^{-3}$$

Q2.

A bullet is fired through a wooden board, 5.52 inches thick, with its line of motion perpendicular to the face of the board. If it enters with a speed of 450 m/s and emerges with a speed of 220 m/s, what is the bullet's acceleration as it passes through the board? (Assume the acceleration is constant and take 1 inch = 2.54 cm.)

Ans:

$$v^2 = v_0^2 + 2a\Delta x$$

$$a = \frac{v^2 - v_0^2}{2\Delta x} = \frac{(250)^2 - (450)^2}{2 \times 5.52 \times 2.54 \times 10^{-2}} = 550 km/s^2$$

Phys101	First Major-172	Zero Version
Coordinator: Dr. S. Kunwar	Monday, March 05, 2018	Page: 2

Q3.

A person pushes a cart along a straight track. The velocity of the cart changes over time as shown in **Figure 1**. What is the average acceleration of the cart between t = 2 s and t = 7 s?

Q4.

Ans:

A rock is dropped vertically down from rest from the top of a 100-m high building. At what time and with what speed will the rock reach 50.0 m below the top of the building? (Ignore air resistance)

A) 3.18 s, 31.3 m/s
B) 1.50 s, 19.8 m/s
C) 4.36 s, 24.5 m/s
D) 3.18 s, 11.6 m/s
E) 9.80 s, 59.1 m/s

Ans:

$$v_0 = 0$$
$$\Delta y = -50 \ m$$

$$a = -9.8 \ m/s^2$$

$$\Delta y = \frac{1}{2}at^2$$

$$t = \sqrt{\frac{2\Delta y}{2}} = \sqrt{\frac{2 \times (-50)}{2}} = 3.2 s$$

$$\sqrt{\frac{a}{\sqrt{-9.8}}}$$

$$v^{2} = v_{0}^{z} + 2a\Delta y$$

$$v = \sqrt{2a\Delta y} = \sqrt{2 \times (-9.8)(-50)} = 31.3 \text{ m/s}$$

c-20-n-20-s-0-e-0-fg-1-fo-1

Phys101	First Major-172	Zero Version
Coordinator: Dr. S. Kunwar	Monday, March 05, 2018	Page: 3

Q5.

The position of a particle moving along the x axis is given by: $x = 2.0 + 6.0t^2 - 2.0t^3$ (in SI units). Find the magnitude of the acceleration at the instant when the particle reaches the maximum position along the positive x-axis.

Ans:

$$x = 2 + 6t^2 - 2t^3$$

$$v(t) = \frac{dx}{dt} = 12t - 6t^2$$

At maximum position, v(t) = 0

$$12t - 6t^{2} = 0 \Rightarrow t = 2s$$

$$a(t) = \frac{dv(t)}{dt} = 12 - 12t$$

$$a(2) = 12 - 12 \times 2 = -12 m/s^{2}$$

$$a(2) = 12 m/s^{2}$$

Q6.

A vector \vec{F} is given as $\vec{F} = q(\vec{v} \times \vec{B})$, where \vec{v} is perpendicular to \vec{B} . In which of the situations, shown in Figure 2, is the direction of \vec{B} in the positive z-axis if q is a positive constant?

$$F = q(v \times B)$$

Phys101	First Major-172	Zero Version
Coordinator: Dr. S. Kunwar	Monday, March 05, 2018	Page: 4

Q7.

The three vectors in **Figure 3** have magnitudes a = 3.00 m, b = 4.00 m, and c = 10.0 m and angle $\theta = 30.0^{\circ}$. If $\vec{c} = p\vec{a} + q\vec{b}$, what are the values of p and q, respectively?

Q8.

Starting from origin O, a camel walks 25 km south of west (\vec{d}_1) and reaches to point A as shown in **Figure 4**. Then it walks 30 km directly up to the north (\vec{d}_2) and reaches to

Phys101	First Major-172	Zero Version
Coordinator: Dr. S. Kunwar	Monday, March 05, 2018	Page: 5

point B. If point B is 28 km away from the origin, find the angle (θ) between \vec{d}_1 and \vec{d}_2

Q9.

A particle moves in the xy plane, starting from the origin at t = 0 with an initial velocity $\vec{v}_0 = 20.0\hat{i} - 3.00\hat{j}$, where the unit of velocity is m/s. The particle experiences an acceleration in the x direction only that is given by $a_x = -4.00 \text{ m/s}^2$. Find the magnitude of its average velocity from t = 0 to t = 5.00 s.

Ans:

$$\Delta x(t) = v_{0x} \Delta t + \frac{1}{2} a_x (\Delta t)^2$$

$$\Delta x(5) = 20 \times 5 - \frac{1}{2} \times 4 \times 5^2 = 50 m$$

$$\Delta y(5) = v_{0y} \Delta t = -3 \times 5 = -15 m$$

$$v_{av} = \frac{\Delta x}{\Delta t}\hat{i} + \frac{\Delta y}{\Delta t}\hat{j} = \frac{50}{5}\hat{i} - \frac{15}{5}\hat{j} = 10\hat{i} - 3\hat{j}$$
$$|v_{av}| = \sqrt{10^2 + 3^2} = 10.4 \text{ m/s}$$

Q10.

Phys101	First Major-172	Zero Version
Coordinator: Dr. S. Kunwar	Monday, March 05, 2018	Page: 6

The pilot of an aircraft flies due north relative to the ground in a wind blowing at 40 km/h toward the east. If his speed relative to the ground is 80 km/h, what is the velocity of his airplane relative to the air? (Considering $\hat{i} = \text{East}$ and $\hat{j} = \text{North}$)

	A) $-40\hat{i} + 80\hat{j}$ (km/h)	↑N
	B) $-40\hat{i} - 80\hat{j}$ (km/h)	
	C) $40\hat{i} + 80\hat{j}$ (km/h)	
	D) $40\hat{i} - 80\hat{j}$ (km/h)	\rightarrow
Ans:	E) $40\hat{i} + 40\hat{j}$ (km/h)	<i>W</i> =Wind
	$v_{AE} = 80 \hat{j}$	A=Airplane
	$arphi_{WE}=40~\hat{\imath}$	E=Earth
	$v_{AW} = v_{AE} - v_{WE}$	
	$v_{AW} = 80\hat{j} - 40\hat{\iota} = -40\hat{\iota} + 80\hat{j} \ (km/h)$	

Q11.

An Earth satellite moves in a circular orbit of radius 7010 km with a period of 98 min. What is the magnitude of the centripetal acceleration of the satellite?

A)	8.0 m/s^2
B)	5.0 m/s^2
C)	3.0 m/s^2
D)	2.0 m/s^2
E)	4.0 m/s^2

Ans:

$$v = \frac{2\pi R}{T}$$

$$a = \frac{v^2}{R} = \frac{4\pi^2 R^2}{T^2 R} = \frac{4\pi^2 R}{T^2}$$

$$a = \frac{4 \times 3.14^2 \times 7010 \times 10^3}{98 \times 60} = 8 \ m/s^2$$

Radius of Earth = 6340 km

Q12.

Phys101	First Major-172	Zero Version
Coordinator: Dr. S. Kunwar	Monday, March 05, 2018	Page: 7

A stone is thrown from the top of a building at an angle of 30° above the horizontal with an initial speed of 20 m/s. The height from which the stone is thrown is 45 m above the ground. What is the final speed of the stone just before it hits the ground? (Ignore air resistance)

Q13.

Two blocks of masses 2.0 kg and 3.0 kg move on a horizontal frictionless surface and are subjected to two horizontal forces of magnitudes 25 N and 5.0 N, respectively, as shown in **Figure 5**. What is the magnitude of the force exerted by block 2 on block 1?

Q14.

Phys101	First Major-172	Zero Version
Coordinator: Dr. S. Kunwar	Monday, March 05, 2018	Page: 8

A block is projected up a frictionless inclined plane with initial speed $v_o = 3.50$ m/s. The angle of the inclined plane is $\theta = 32.0^{\circ}$. How far up the plane does the block go?

A) 1.18 m B) 2.91 m C) 5.27 m D) 6.34 m E) 3.75 m Ans: v = 0 $a = -9.8 \sin 32^{\circ}$ $v_0 = 3.5$ $\Delta l = ?$ $v_0^2 = v_0^2 + 2a\Delta l$ $\Delta l = -\frac{v_0^2}{2a} = \frac{3.5^2}{2 \times 9.8 \sin 32} = 1.18 m$

Q15.

Using a rope that will break completely if the tension in it exceeds 600 N, you need to lift vertically a block weighing 449 N from the ground. What magnitude of acceleration will put the rope on the verge of breaking?

A)	3.3	m/s^2
B)	1.4	m/s^2
C)	7.5	m/s^2
D)	4.6	m/s^2
E)	9.1	m/s^2

Ans:

$$a = \frac{600 - 449}{(449/9.8)} = 3.3 \ m/s^2$$

Q16.

Phys101	First Major-172	Zero Version
Coordinator: Dr. S. Kunwar	Monday, March 05, 2018	Page: 9

A block slides on a frictionless horizontal surface under the action of two forces, as shown in **Figure 6**. If F = 20 N and M = 5.0 kg, find the magnitudes of the resulting acceleration of the block and the normal force on the block, respectively.

Q17.

Ans:

A massless rope passes over a massless and frictionless pulley suspended from the ceiling as shown in **Figure 7**. A block of mass $m_1 = 4$ kg is attached to one end, and another block of mass $m_2 = 5$ kg is attached to the other end. The acceleration of the 5-kg block is:

Q18.

Phys101	First Major-172	Zero Version
Coordinator: Dr. S. Kunwar	Monday, March 05, 2018	Page: 10

A crate rests on a rough horizontal surface and a person pulls on it with a 10-N force. No matter what the orientation of the force, **the crate does not move**. Rank the situations shown in **Figure 8** according to the magnitude of the frictional force of the surface on the crate, **least to greatest**. **Figure 8**

Q19.

Ans:

A coin placed 30.0 cm from the center of a rotating horizontal turntable slips when its speed reaches 50.0 cm/s. What is the coefficient of static friction between the coin and the turntable?

A) 0.085

B) 0.027C) 0.045D) 0.064E) 0.019

Ans:

$$f - \frac{mv^2}{r} = 0 \text{ when slips}$$
$$\mu_s mg - \frac{mv^2}{r} = 0$$
$$\mu_s = \frac{v^2}{rg} = \frac{(50 \times 10^{-2})^2}{(30 \times 10^{-2} \times 9.8)} = 0.085$$

Phys101	First Major-172	Zero Version
Coordinator: Dr. S. Kunwar	Monday, March 05, 2018	Page: 11

Q20.

In **Figure 9**, block 1 of mass $m_1 = 2.0$ kg and block 2 of mass $m_2 = 1.0$ kg are connected by a string of negligible mass. Block 2 is pushed by a force of magnitude 20 N making an angle $\theta = 35^{\circ}$ as shown. The coefficient of kinetic friction between each block and the horizontal surface is 0.20. What is the tension in the string?

Ans:

$$T - f_1 = m_1 a$$

$$T - \mu_k m_1 g = m_1 a$$

$$a = \frac{T - 0.2 \times 2 \times 9.8}{2} = \frac{T}{2} - 1.96$$

$$\overbrace{T}^{f_2} \xrightarrow{} Fcos\theta$$

Т

 $F\cos\theta - f_2 - T = m_2 a$

 $20\cos 35^\circ - \mu_k F_{N2} - T = m_2 a$

 $20\cos 35^{\circ} - 0.2(m_2g + F\sin 35^{\circ}) = m_2a + T$

$$1 \times \left(\frac{T}{2} - 1.98\right) + T = 20\cos 35^\circ - 0.2(1 \times 9.8 + 20\sin 35^\circ)$$

T = 9.4 N