Q1.

The magnitude of a force applied on an object is given by the relation: $F=k \rho^{x} v^{y} t^{z}$, where k is dimensionless constant, ρ is density, v is speed and t is time. The values of x, y and z; respectively; are:
A) 1, 4 and 2
B) 1,2 and 3
C) 2, 1 and 2
D) 1,2 and 4
E) 1, 4 and 3

Solution

$\vec{F}=k P^{x} v^{y} t^{z}$
$M L T^{-2}=\left(M L^{-3}\right)^{x}\left(L T^{-1}\right)^{y} T^{z}$
$M L T^{-2}=M^{x} L^{-3 x+y} T^{-y+z}$
$x=1$
$-3 x+y=1 \quad \Rightarrow y=4$
$-y+z=-2 \quad \Rightarrow z=2$
Q2.
A car covers $\frac{2}{5}$ of the total distance at the speed of $45.0 \mathrm{~km} / \mathrm{h}$ and the remaining $\frac{3}{5}$ of the total distance at the speed of $63.0 \mathrm{~km} / \mathrm{h}$. The average speed of the car during the whole trip is:
A) $15.1 \mathrm{~m} / \mathrm{s}$
B) $24.3 \mathrm{~m} / \mathrm{s}$
C) $31.1 \mathrm{~m} / \mathrm{s}$
D) $10.5 \mathrm{~m} / \mathrm{s}$
E) $45.3 \mathrm{~m} / \mathrm{s}$

Solution

$$
\begin{aligned}
& \mathrm{t}_{1}=\frac{2}{5} \frac{\mathrm{x}}{\mathrm{v}_{1}} ; \mathrm{t}_{2}=\frac{3}{5} \frac{\mathrm{x}}{\mathrm{v}_{2}} \\
& \mathrm{v}_{\mathrm{av}}=\frac{\mathrm{x}}{\mathrm{t}_{1}+\mathrm{t}_{2}}=\frac{\mathrm{x}}{\frac{2 \mathrm{x}}{5 \mathrm{v}_{1}}+\frac{3 \mathrm{x}}{5 \mathrm{v}_{2}}}=\frac{5 \mathrm{xv}_{1} \mathrm{v}_{2}}{\mathrm{x}\left(2 \mathrm{v}_{2}+3 \mathrm{v}_{1}\right)}=\frac{5 \mathrm{v}_{1} \mathrm{v}_{2}}{\left(2 \mathrm{v}_{2}+3 \mathrm{v}_{1}\right)} \\
& \mathrm{v}_{1}=\frac{45 \times 1000 \mathrm{~m}}{3600} \frac{\mathrm{~s}}{\mathrm{~s}}=12.5 \mathrm{~m} / \mathrm{s} ; \mathrm{v}_{2}=\frac{63 \times 1000 \mathrm{~m}}{3600} \frac{\mathrm{~m}}{\mathrm{~s}}=17.5 \mathrm{~m} / \mathrm{s} \\
& \therefore \mathrm{v}_{\mathrm{av}}=\frac{5 \times 12.5 \times 17.5}{(2 \times 17.5+3 \times 12.5)}=15.1 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Q3.
A rock is thrown vertically upward from ground level at time $t=0$. At $t=1.5 \mathrm{~s}$ it passes the top of a tall tower, and 1.0 s later it reaches its maximum height. What is the height of the tower? (Ignore air resistance)
A) 25.7 m
B) 14.4 m
C) 37.1 m
D) 45.5 m
E) 57.4 m

Solution

$$
\mathrm{t}_{1}=\left.1.5 \mathrm{~s}| |_{\mathrm{V}_{\mathrm{G}}}^{\left.\right|_{\mid} ^{\mathrm{v}}=0}\right|_{\mid} ^{\mathrm{t}_{2}}=2.5 \mathrm{~s}
$$

$$
\begin{aligned}
& v=\mathrm{v}_{0}+\mathrm{at}_{2} \\
& 0=\mathrm{v}_{0}-9.8 \times 2.5 \\
& \mathrm{v}_{0}=24.5 \mathrm{~m} / \mathrm{s} \\
& \mathrm{y}=\mathrm{v}_{0} \mathrm{t}_{1}+\frac{1}{2} \mathrm{at}_{1}^{2}=24.5 \times 1.5-\frac{1}{2} \times 9.8 \times(1.5)^{2}=25.7 \mathrm{~m}
\end{aligned}
$$

Q4.

Figure 1 shows the displacement - time graph of a particle moving along the x -axis. Which one of the following statements about the particle's motion is FALSE?
A) The particle changes its direction at 4 s .
B) Over the whole trip, the magnitude of displacement of the particle is 3 times smaller than its distance.
C) The particle's speeds for the first $2 \mathrm{~s}(\mathrm{t}=0$ to $t=2 s)$ and next $2 s(t=2 s$ to $t=4 s)$ are equal.
D) The particle changes its direction at 2 s .
E) The particle moves forward (along the positive x -direction), reverses direction and moves beyond the starting point.

Ans:
A

Q5.
If the position of a particle is given by $x(t)=10 t-5 t^{2}$, where x is in meters and t is in seconds, find the magnitude of average velocity of the particle from $t=0$ to the time for maximum position along the positive x-direction.
A) $5 \mathrm{~m} / \mathrm{s}$
B) $10 \mathrm{~m} / \mathrm{s}$
C) $20 \mathrm{~m} / \mathrm{s}$
D) $15 \mathrm{~m} / \mathrm{s}$
E) $2 \mathrm{~m} / \mathrm{s}$

Solution

$\mathrm{x}(\mathrm{t})=10 \mathrm{t}-5 \mathrm{t}^{2}$
$\mathrm{v}(\mathrm{t})=\frac{d x(\mathrm{t})}{d t}=10-10 \mathrm{t}$
For maximum positive x-position
$\mathrm{v}(\mathrm{t})=0 \Rightarrow \mathrm{t}=1 \mathrm{~s}$
$\mathrm{v}_{\mathrm{avg}}=\frac{\Delta \mathrm{x}}{\Delta \mathrm{t}}=\frac{\mathrm{x}(1)-\mathrm{x}(0)}{1}=\frac{5-0}{1}=5 \mathrm{~m} / \mathrm{s}$
Q6.
Consider two non-zero vectors \vec{A} and \vec{B}. If $|\vec{A}+\vec{B}|^{2}=|\vec{A}|^{2}+|\vec{B}|^{2}$ then,
A) \vec{A} and \vec{B} must be perpendicular to each other.
B) \vec{A} and \vec{B} must be parallel to each other.
C) The angle between \vec{A} and \vec{B} must be 180°.
D) The angle between \vec{A} and \vec{B} must be 45°.
E) The angle between \vec{A} and \vec{B} must be 30°.

Solution

$$
|\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}|^{2}=(\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}) \cdot(\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}})=|\overrightarrow{\mathrm{A}}|^{2}+|\overrightarrow{\mathrm{B}}|^{2}+2|\overrightarrow{\mathrm{~A}}||\overrightarrow{\mathrm{B}}| \cos \theta
$$

For $\theta=90^{\circ}$

$$
|\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}|^{2}=|\overrightarrow{\mathrm{A}}|^{2}+|\overrightarrow{\mathrm{B}}|^{2}
$$

Q7.
In the sum $\vec{A}+\vec{B}=\vec{C}$, vector \vec{A} has a magnitude of 12.0 units and is directed at 40.0° counterclockwise from the $+x$ direction. Vector \vec{C} has a magnitude of 15.0 units and is directed at 20.0° clockwise from the $-x$ direction. Find the vector \vec{B}.
A) $-23.3 \hat{\mathrm{i}}-2.60 \hat{\mathrm{j}}$
B) $1.35 \hat{i}+7.15 \hat{j}$
C) $17.5 \hat{i}+15.8 \hat{j}$
D) $23.5 \hat{i}+11.9 \hat{j}$
E) $-17.5 \hat{\mathrm{i}}+15.8 \hat{\mathrm{j}}$

Solution

$$
\vec{A}=12 \cos 40 \hat{\imath}+12 \sin \theta \hat{\jmath}
$$

$$
\vec{C}=-\left(15 \cos 20^{\circ}+12 \cos 40^{\circ}\right) i+\left(15 \sin 20^{\circ}-12 \sin 40\right)=-23.3 \hat{\imath}-2.6 \hat{\jmath}
$$

Q8.
Consider two displacements, \vec{d}_{1} with magnitude 3 m and \vec{d}_{2} with magnitude 4 m . What angle does \vec{d}_{2} make with \vec{d}_{1} to get a resultant displacement of magnitude 4 m ?
A) 112°
B) 25°
C) Zero
D) 156°
E) 90°

Solution

$$
\begin{aligned}
& \vec{r}=(4+3 \cos \theta) \hat{\imath}+3 \sin \theta \hat{\jmath} \\
& |r|^{2}=(x)^{2}+(y)^{2} \\
& |r|^{2}=(4+3 \cos \theta)^{2}+9 \sin ^{2} \theta \\
& 16=16+24 \cos \theta+9 \\
& \theta=\cos ^{-1}\left(-\frac{9}{24}\right)=112^{\circ}
\end{aligned}
$$

Q9.
Here are three vectors:
$\vec{d}_{1}=3 \hat{i}+2 \hat{k}$
$\vec{d}_{2}=2 \hat{i}+4 \hat{j}$
$\vec{d}_{3}=3 \hat{j}+\hat{k}$
The result of $\vec{d}_{1} \cdot\left(\vec{d}_{2} \times \vec{d}_{3}\right)$ is:
A) 24
B) 37
C) 65
D) 11
E) Zero

Solution

$$
\begin{aligned}
& \overrightarrow{\mathrm{d}}_{1}=3 \hat{\imath}+2 \hat{k} \\
& \overrightarrow{\mathrm{~d}}_{2}=2 \hat{\imath}+4 \hat{\jmath} \\
& \overrightarrow{\mathrm{~d}}_{3}=3 \hat{\jmath}+\hat{k} \\
& \overrightarrow{\mathrm{~d}}_{2} \times \overrightarrow{\mathrm{d}}_{3}=(2 \hat{\imath}+4 \hat{\jmath}) \times(3 \hat{\jmath}+\hat{k})=6 \hat{k}+2(-\hat{\jmath})+4 \hat{\imath}=4 \hat{\imath}-2 \hat{\jmath}+6 \hat{k} \\
& \overrightarrow{\mathrm{~d}}_{1} \cdot \overrightarrow{\mathrm{~d}}_{2} \times \overrightarrow{\mathrm{d}}_{3}=(3 \hat{\imath}+2 \hat{k}) \cdot(4 \hat{\imath}-2 \hat{\jmath}+6 \hat{k})=12+12=24
\end{aligned}
$$

Phys101	First Major-171	Zero Version
Coordinator: Dr. S. Kunwar	Wednesday, October 25, 2017	Page: 6

Q10.

A particle P travels with constant speed on a circle of radius $r=3.00 \mathrm{~m}$ as shown in Figure 2 and completes one revolution in 20.0 s. The particle passes through O at time $t=0$. With respect to O, find the particle's position vector and acceleration at the time $t=15 \mathrm{~s}$.
A) $-3.00 \mathrm{~m} \hat{\mathrm{i}}+3.00 \mathrm{~m} \hat{\mathrm{j}}$ and $0.296 \hat{\mathrm{i}} \mathrm{m} / \mathrm{s}^{2}$
B) $1.35 \mathrm{~m} \hat{\mathrm{i}}+7.15 \mathrm{~m} \hat{\mathrm{j}}$ and $3.00 \hat{\mathrm{i}} \mathrm{m} / \mathrm{s}^{2}$
C) $7.25 \mathrm{~m} \hat{\mathrm{i}}+5.18 \mathrm{~m} \hat{\mathrm{j}}$ and $-3.00 \hat{\mathrm{i}} \mathrm{m} / \mathrm{s}^{2}$
D) $-3.00 \mathrm{~m} \hat{\mathrm{i}}+3.00 \mathrm{~m} \hat{\mathrm{j}}$ and $0.532 \hat{\mathrm{i}} \mathrm{m} / \mathrm{s}^{2}$
E) $-1.35 \mathrm{~m} \hat{\mathrm{i}}+7.15 \mathrm{~m} \hat{\mathrm{j}}$ and $-0.532 \hat{\mathrm{j}} \mathrm{m} / \mathrm{s}^{2}$

Solution

$$
\begin{aligned}
& \vec{r}=-3 \hat{\imath}+3 \hat{\jmath} \\
& \vec{a}=\frac{v^{2}}{r}=\frac{\left(\frac{2 \pi r}{20}\right)^{2}}{r}=\frac{\pi^{2} r}{100}=\frac{3.14^{2} \times 3}{100}=0.296 \hat{\imath}
\end{aligned}
$$

Q11.

A train moves at a constant speed of $60.0 \mathrm{~km} / \mathrm{h}$ due east for 40.0 min , and then moves with the same speed in the direction 45.0° east of north for 20.0 min . What are the magnitude and direction of its average velocity during this trip?
A) $56.0 \mathrm{~km} / \mathrm{h}, 14.6^{\circ}$ North of East
B) $28.3 \mathrm{~km} / \mathrm{h}, 45.0^{\circ}$ North of East
C) $10.0 \mathrm{~km} / \mathrm{h}, 23.0^{\circ}$ South of East
D) $28.3 \mathrm{~km} / \mathrm{h}, 86.2^{\circ}$ South of East
E) $56.0 \mathrm{~km} / \mathrm{h}, 36.5^{\circ}$ North of East

Solution

$$
\begin{aligned}
& x_{1}=\frac{60}{60} \times 40=40 \mathrm{~km} \hat{\imath} \\
& x_{2}=\frac{60}{60} \times 20 \sin 45^{\circ} \hat{\imath} \\
& y_{2}=\frac{60}{60} \times 20 \cos 45^{\circ} \hat{\jmath} \\
& x=\left(40+20 \cos 45^{\circ}\right)=54.1 \mathrm{~km} \hat{\imath} \\
& y=20 \cos 45^{\circ} \hat{\jmath}=14.1 \hat{\jmath} \\
& t=40+20=60 \mathrm{~min}=1 \mathrm{hr} \\
& v_{x a v}=54.1 \mathrm{~km} / \mathrm{h} \hat{\imath} \\
& v_{\text {yav }}=14.1 \mathrm{~km} / \mathrm{h} \hat{\jmath} \\
& \left|v_{a v}\right|=\sqrt{(54.1)^{2}+(14.1)^{2}}=56 \mathrm{~km} / \mathrm{h} \\
& \theta=\tan ^{-1}\left(\frac{14.1}{54.1}\right)=14.6^{\circ} \text { North of East }
\end{aligned}
$$

Q12.

A $250-\mathrm{m}$ wide river flows due east at a uniform speed of $2.0 \mathrm{~m} / \mathrm{s}$. A boat with a speed of $8.0 \mathrm{~m} / \mathrm{s}$ relative to the water leaves the south bank pointed in a direction 30° west of north. How long does the boat take to cross the river?
A) 36 s
B) 57 s
C) 24 s
D) 13 s
E) 85 s

Solution

$$
\begin{aligned}
& v_{B R}=-8 \sin 30 \hat{\imath}+8 \cos 30 \hat{\jmath} \\
& v_{\mathrm{REx}}=2 \hat{1}, \quad v_{\mathrm{REy}}=0
\end{aligned}
$$

Since the boat is moving towards north ($\hat{\jmath}$) with respect to ground (earth: E), only $\hat{\jmath}$ motion is important.
$v_{B R y}=v_{B E y}-v \mu_{R E}^{0}$
$v_{B E y}=8 \cos 30^{\circ}$
$t=\frac{y}{v_{B E y}}=\frac{250}{4 \sqrt{3}}=36 \mathrm{~s}$

Q13.
A projectile is fired with an initial speed u at an angle θ above the horizontal. What is the change in speed when it reaches the highest point? (Ignore air resistance.)
A) $(u \cos \theta-u)$

B) $u \cos \theta$
C) u
D) $u \sin \theta$
E) $(u \cos \theta+u)$

Q14.

A hot-air balloon of mass 100 kg is descending vertically with downward acceleration of magnitude $3.00 \mathrm{~m} / \mathrm{s}^{2}$. How much mass must be thrown out of the balloon to give the balloon an upward acceleration of magnitude $3.00 \mathrm{~m} / \mathrm{s}^{2}$. Assume that the upward force from the air (the lift) does not change because of the decrease in mass.
A) 46.9 kg
B) 90.1 kg
C) 25.7 kg
D) 67.4 kg
E) 13.5 kg

Solution

$F_{u}-m g=-m a$
$F_{u}=m g-m a \rightarrow(1)$

$F_{u}-m^{\prime} g=m^{\prime} a$
$F_{u}=m^{\prime} g+m^{\prime} a \rightarrow(2)$
From equations (1) and (2)
$m^{\prime}=\frac{m(g-a)}{(a+g)}$
$m^{\prime}=\frac{100 \times 6.8}{12.8}=53.1 \mathrm{~kg}$
$\Delta m=m-m^{\prime}=46.9 \mathrm{~kg}$

Phys101	First Major-171	Zero Version
Coordinator: Dr. S. Kunwar	Wednesday, October 25, 2017	Page: 10

Q15.
Figure 3 shows three blocks being pushed across a frictionless floor by horizontal force \vec{F}. Rank the force \vec{F}, \vec{F}_{21} (force on block 2 from block 1) and \vec{F}_{32} (force on block 3 from block 2) according to magnitude, greatest first.

Figure 3
A) $\vec{F}, \vec{F}_{21}, \vec{F}_{32}$
B) $\vec{F}_{21}, \vec{F}_{32}, \vec{F}$
C) \vec{F}, then $\left(\vec{F}_{21}\right.$ and $\left.\vec{F}_{32}\right)$ tie
D) $\vec{F}_{32}, \vec{F}, \vec{F}_{21}$
E) All tie

Solution

$$
\begin{aligned}
& |F|=17 a \\
& \left|F_{21}\right|=12 a \\
& \left|F_{32}\right|=10 a \\
& |F|>F_{21}>F_{32}
\end{aligned}
$$

Q16.

Figure 4 shows two blocks connected by a cord (of negligible mass) that passes over a frictionless pulley (also of negligible mass). One block has mass $m_{l}=65.0 \mathrm{~kg}$; the other block, which is at the height $h=10.0 \mathrm{~m}$ from the ground, has mass $m_{2}=85.0 \mathrm{~kg}$. If the system is released from rest with what speed does m_{2} hit the ground? (Ignore air resistance)
A) $5.11 \mathrm{~m} / \mathrm{s}$
B) $1.07 \mathrm{~m} / \mathrm{s}$
C) $3.70 \mathrm{~m} / \mathrm{s}$
D) $2.32 \mathrm{~m} / \mathrm{s}$
E) $4.05 \mathrm{~m} / \mathrm{s}$

Solution

$T-m_{1} g=m_{1} a$
$T-m_{1} g=m_{1} a$
$T=m_{1} g+m_{1} a----(1)$
$T=m_{2} g-m_{2} a----(2)$
$T-m_{1} g=m_{1} a$
$T=m_{1} g+m_{1} a----(1)$
$T=m_{2} g-m_{2} a----(2)$

$m_{2} g+m_{1} a=m_{2} g-m_{2} a$
$a=\frac{\left(m_{2}-m_{1}\right) g}{m_{1}+m_{2}}=1.3 \mathrm{~m} / \mathrm{s}^{2}$
$v_{0}=0, \quad \Delta y=-10 m, \quad a=-1.3 \mathrm{~m} / \mathrm{s}^{2}$
$v=\sqrt{2 \times(-10) \times(-1.3)}=5.11 \mathrm{~m} / \mathrm{s}$

Figure 4

Q17.
A block of mass m is at rest on a plane that is inclined at an angle of 30° with the horizontal, as shown in Figure 5. Which of the following relations about the magnitude of static friction force f_{s} is necessarily TRUE? (Ignore air resistance)
A) $f_{s}=m g \sin 30^{\circ}$

Figure 5
B) $f_{s}>m g \sin 30^{\circ}$
C) $f_{s}>m g$
D) $f_{s}>m g \cos 30^{\circ}$
E) $f_{s}=m g \cos 30^{\circ}$

Solution

Not moving: Static Friction

$$
\therefore f_{s}=\mathrm{mgsin} \theta
$$

Q18.

A 60 kg block slides along the top of a 100 kg block as shown in Figure 6. The 60 kg block has an acceleration of $3.0 \mathrm{~m} / \mathrm{s}^{2}$ while a horizontal force $\vec{F}=320 \mathrm{~N}$ is applied to it. There is no friction between the 100 kg block and the horizontal surface on which it stands but there is friction between the two blocks. Find the magnitude of the acceleration of the 100 kg block during the time the two blocks remain in contact.
A) $1.4 \mathrm{~m} / \mathrm{s}^{2}$

Figure 6
B) $2.0 \mathrm{~m} / \mathrm{s}^{2}$
C) $3.7 \mathrm{~m} / \mathrm{s}^{2}$
D) $1.6 \mathrm{~m} / \mathrm{s}^{2}$
E) $3.0 \mathrm{~m} / \mathrm{s}^{2}$

Solution

$$
\stackrel{f}{\longleftrightarrow} \underset{60 \mathrm{~kg}}{\longrightarrow} 320
$$

$$
\begin{aligned}
& 320-f=60 a_{1} \\
& f=320-60 \times 3=140 \mathrm{~N} \\
& \qquad \underset{100}{\bullet} \\
& f=100 a_{2} \Rightarrow a_{2}=\frac{f}{100}=\frac{140}{100}=1.4 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Q19.

A man is pulling his 20.0 kg suitcase at the constant speed of $0.500 \mathrm{~m} / \mathrm{s}$. He pulls it with 130 N of force at an angle of 37.0° above the horizontal as shown in Figure 7. The normal force on the suitcase and the force of friction on wheels of the suitcase are respectively:
A) 118 N and 104 N
B) 54.6 N and 86.4 N
C) 118 N and 86.4 N
D) 56.4 N and 104 N
E) 253 N and 140 N

Solution:

$130 \sin 30^{\circ}+F_{N}=m g$
$F_{N}=20 \times 9.8-130 \sin 30^{\circ}=118 N$
$f=130 \cos 37^{\circ}=104 N$

Figure 7

Phys101	First Major-171	Zero Version
Coordinator: Dr. S. Kunwar	Wednesday, October 25, 2017	Page: 13

Q20.
When a car moves on a flat circular road at a constant speed of $15.0 \mathrm{~m} / \mathrm{s}$, the driver experiences a radial force of 120 N . What is the radial force on the driver if the speed of the car on this circular road is $30.0 \mathrm{~m} / \mathrm{s}$?

A) 480 N
B) 120 N
C) 224 N
D) 310 N
E) 548 N

Solution:

$$
\begin{align*}
& 120=\frac{m \times 15^{2}}{r} \ldots \ldots \tag{1}\\
& F=\frac{m \times 30^{2}}{r} \ldots \ldots \ldots \tag{2}
\end{align*}
$$

Dividing equation (2) by (1) yields

$$
F=480 \mathrm{~N}
$$

