Phys101	First Major-163	Zero Version
Coordinator: Dr. M. Al-Kuhaili	Sunday, July 23, 2017	Page: 1

Q1.

When a large object moves in air, there is a resistive force on it whose magnitude is given by: $F = 0.5 D \rho B v^2$, where D is a dimensionless constant, ρ is the density of the air and v is the speed of the object. What are the dimensions of B?

A) L^2

- B) M²
- C) T²
- D) ML²
- E) TM^2

Ans: [B] =
$$\left[\frac{F}{\rho v^2}\right] = \left(kg \cdot \frac{m}{s^2}\right) \cdot \left(\frac{kg}{m^3}\right)^{-1} \cdot \left(\frac{m^2}{s^2}\right)^{-1}$$

= $\frac{kg \cdot m}{s^2} \cdot \frac{m^3}{kg} \cdot \frac{s^2}{m^2} = m^2 \to L^2$

Q2.

A cubic box has a side of length 1.00 ft. What is the volume of the box in cubic meters? (1 ft = 12.0 inch, 1 inch = 2.54 cm)

A) 0.0283

- B) 0.843
- C) 0.759
- D) 0.227
- E) 0.00100

Ans:

$$l = 1 \text{ ft} \cdot \frac{12 \text{ in}}{1 \text{ ft}} \cdot \frac{2.54 \text{ cm}}{1 \text{ in}} \cdot \frac{1 \text{ m}}{100 \text{ cm}} = 0.3048 \text{ m}$$

$$V = l^3 = (0.3048)^3 = 0.0283 \text{ m}^3$$

Q3.

A car is travelling along a straight line. It travels at 40.0 km/h for 2.00 h, then at 50.0 km/h for 1.00 h, and finally at 20.0 km/h for 0.500 h. What is the average speed of the car?

A) 40.0 km/h

- B) 36.7 km/h
- C) 55.0 km/h
- D) 45.0 km/h
- E) 31.6 km/h

$$d_{1} = 40 \times 2 = 80 \text{ km} d_{2} = 50 \times 1 = 50 \text{ km} d_{3} = 20 \times \frac{1}{2} = 10 \text{ km}$$

$$d = 80 + 50 + 10 = 140 \text{ km} t = 2 + 1 + \frac{1}{2} = 3.5 \text{ h}$$

$$S_{avg} = \frac{d}{t} = \frac{140}{3.5} = 40 \ km/h$$

Phys101	First Major-163	Zero Version
Coordinator: Dr. M. Al-Kuhaili	Sunday, July 23, 2017	Page: 2

Q4.

In one dimensional motion, a particle is 5.00 m east of the origin and is moving west with a speed of 2.00 m/s. Five seconds later, it is 11.0 m east of the origin. What is its acceleration? Assume that the acceleration is constant.

A)
$$1.28 \text{ m/s}^2$$

- \overline{B}) 0.320 m/s²
- C) 2.08 m/s^2
- D) 1.68 m/s^2
- E) 0.781 m/s^2

Ans:
$$x_1 = +5 \text{ m}; v_1 = -2 \text{ m/s}$$

$$x_2 = +11 \text{ m; } t = 5.0 \text{ s}$$

$$x_2 - x_1 = v_1 t + \frac{1}{2} a t^2$$

$$11 - 5 = -10 + 12.5 \text{ a} \implies a = \frac{16}{12.5} = 1.28 \text{ m/s}^2$$

Q5.

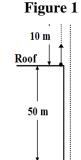
An object is thrown vertically upward from the roof of a building that is 50 m high. It rises to a maximum height of 10 m above the roof (Figure 1). When is it 20 m below the roof?

A) 3.9 s

- B) 5.2 s
- C) 4.9 s
- D) 3.2 s
- E) 6.1 s

Throw \rightarrow max height: $v^2 = v_0^2 - 2g(y - y_0)$

$$0 = v_0^2 - 19.6(60 - 50) \implies v_0 = 14 \text{ m/s}$$


Throw \rightarrow requested point:

$$y - y_0 = v_0 t - \frac{1}{2}gt^2$$

$$30 - 50 = 14t - 4.9t^2$$

$$4.9 t^2 - 14t - 20 = 0$$

$$t = \frac{14 \pm \sqrt{196 + (4 \times 20 \times 4.9)}}{9.8} = 3.9 \text{ s}$$

Phys101	First Major-163	Zero Version
Coordinator: Dr. M. Al-Kuhaili	Sunday, July 23, 2017	Page: 3

Q6.

At time t = 3.0 s, the velocity of a particle, moving along the x-axis with constant acceleration, is v = +4.0 m/s. At t = 7.0 s, its velocity is v = -12 m/s. Find the velocity t = 0.

A)
$$+ 16 \text{ m/s}$$

- B) + 20 m/s
- C) -16 m/s
- D) -20 m/s
- E) + 5.0 m/s

Ans: $v = v_0 + at$

(i)
$$4 = v_0 + 3a$$

(i)
$$4 = v_0 + 3a$$

(ii) $-12 = v_0 + 7a$

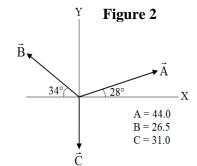
(i)
$$\times -7: -28 = -7v_0 - 21a$$

(ii) $\times 3: -36 = 3v_0 + 21a$ $\} \rightarrow -64 = -4v_0 \Rightarrow v_0 = +16 \text{ m/s}$

Q7.

For the three vectors $(\vec{A}, \vec{B}, \vec{C})$ shown in **Figure 2**, find $\vec{C} \times (\vec{A} \times \vec{B})$.

A)
$$-3.19 \times 10^4 \hat{i}$$


- B) $-6.27 \times 10^4 \hat{i}$
- C) $+2.67 \times 10^4 \hat{i}$
- D) $+3.67 \times 10^4 \hat{i}$
- E) zero

Ans: ϕ angle between \vec{A} , $\vec{B} = 118^{\circ}$

$$|\vec{A} \times \vec{B}| = 44 \times 26.5 \times sin118^{\circ} = 1029.5 \rightarrow \hat{k}$$

 $\vec{C} \times (\vec{A} \times \vec{B})$ is along (-x) by right – hand rule

$$\left|\vec{C}\times\left(\vec{A}\times\vec{B}\right)\right|=31.0\times1029.5\times\sin90^{\circ}=3.19\times10^{4}$$

Phys101 First Major-163 Zero Version Coordinator: Dr. M. Al-Kuhaili Sunday, July 23, 2017 Page: 4

Q8.

What is the angle between two vectors $\vec{A} = 20\hat{i}$ and $\vec{B} = -25\hat{i} + 30\hat{j}$?

- A) 130°
- B) 150°
- C) 160°
- D) 140°
- E) 110°

Ans: \vec{A} is along the x - axis

Angle between \vec{B} and is (+) x axis is $\phi = 180 - tan^{-1} \left(\frac{30}{25} \right) = 130^{\circ}$

Q9.

A body moves from a position with coordinates (1.0, 2.0) m to (-4.0, 2.0) m. Its displacement vector is given by

- A) 5.0 m at 180°
- B) 5.0 m at 135°
- C) 1.7 m at 297°
- D) 5.0 m at 0°
- E) 5.2 m at 108°

Ans:

$$\vec{\mathbf{r}}_{1} = \hat{\imath} + 2\hat{\jmath} \vec{\mathbf{r}}_{2} = -4\hat{\imath} + 2\hat{\jmath} d = \vec{\mathbf{r}}_{2} - \vec{\mathbf{r}}_{1} = -5\hat{\imath} (m)$$

 $\Rightarrow \vec{d}$ makes an angle of 180° and has a magnitude of 5.0 m.

Q10.

At time t = 0, a particle leaves the origin with a velocity of 9.0 m/s in the positive y-direction and moves in the xy plane with a constant acceleration of $(2.0\hat{\mathbf{i}} - 4.0\hat{\mathbf{j}})$ m/s². What is the speed of the particle when its x-coordinate is + 15 m?

- A) 10 m/s
- B) 16 m/s
- C) 12 m/s
- D) 14 m/s
- E) 26 m/s

$$x = v_{0x}t + \frac{1}{2}a_xt^2$$

$$15 = 0 + \left(\frac{1}{2} \times 2\right)t^2 \Rightarrow t = \sqrt{15} = 3.87 \text{ s}$$

$$v_x = v_{0x} + a_x t = 0 + (2)(\sqrt{15}) = 7.75 \text{ m/s}$$

$$v_y = v_{0y} + a_y t = 9 + (-4)(\sqrt{15}) = -6.49 \text{ m/s}$$

Speed = $\sqrt{v_x^2 + v_y^2} = 10 \text{ m/s}$

Q11.

A projectile is launched from the ground at time t = 0. When t = 5.00 s, its velocity is given as: $\vec{v} = 25.0 \hat{\mathbf{i}} - 30.0 \hat{\mathbf{j}}$ (m/s). Find the maximum height of the projectile.

- A) 18.4 m
- B) 15.6 m
- C) 32.9 m
- D) 65.8 m
- E) 49.4 m

Ans:

$$v_y = v_{0y} - gt$$

$$-30 = v_{0y} - (9.8 \times 5) \Rightarrow v_{0y} = 19 \text{ m/s}$$

launch → max. height:

$$v_y^2 = v_{0y}^2 - 2g(y - y_0)$$

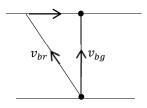
$$0 = (19)^2 - (19.6)(H - 0)$$

$$\Rightarrow$$
 H = 18.4 m

Q12.

A river, of width 150 m, flows with a uniform speed of 4.0 m/s toward the east. It takes 20 s for a boat to cross the river from a point on the south side to the opposite point on the north side. What is the speed of the boat relative to the water?

- A) 8.5 m/s
- B) 9.1 m/s
- C) 5.7 m/s
- D) 7.0 m/s
- E) 6.4 m/s


Ans:

 $r \rightarrow river, g \rightarrow ground, b \rightarrow boat$

$$v_{rg} = 4.0 \text{ m/s}$$

$$v_{bg} = \frac{150}{20} = 7.5 \text{ m/s}$$

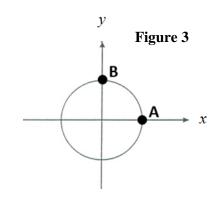
$$v_{br} = \sqrt{v_{bg}^2 + v_{rg}^2} = \sqrt{(4)^2 + (7.5)^2} = 8.5 \text{ m/s}$$

Phys101	First Major-163	Zero Version
Coordinator: Dr. M. Al-Kuhaili	Sunday, July 23, 2017	Page: 6

Q13.

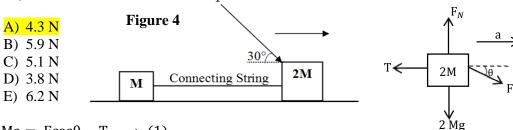
A particle undergoes counterclockwise uniform circular motion around a circle of radius 5.0 m with a period of 3.2 s, as shown in **Figure 3**. In a quarter of a period, as the particle moves from A to B, what is the magnitude of the average velocity of the particle?

A) 8.8 m/s


- B) 9.8 m/s
- C) 4.9 m/s
- D) 7.8 m/s
- E) zero

Ans:

$$\vec{\mathbf{r}}_{i} = 5.0\hat{\imath} \begin{cases} \Delta \vec{r} = 5.0\hat{\jmath} - 5.0\hat{\imath} \ (m) \\ \vec{\mathbf{r}}_{f} = 5.0\hat{\jmath} \end{cases} \Delta t = \frac{T}{4} = \frac{3.2}{4} = 0.8 \ s$$


$$\vec{\mathbf{v}}_{avg} = \frac{\Delta \vec{r}}{\Delta t} = \frac{5.0\hat{\jmath} - 5.0\hat{\imath}}{0.8} = -6.25\hat{\imath} + 6.25\hat{\jmath} \text{ (m/s)}$$

$$v_{ava} = \sqrt{2} \times 6.25 = 8.8 \, m/s$$

Q14.

In **Figure 4**, the force \vec{F} acts to move the two blocks on a horizontal frictionless surface. Find the magnitude of the tension in the massless connecting string. Take F = 15 N, M = 1.5 kg.

Ans:

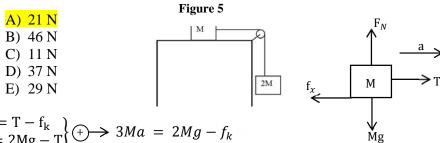
2M:
$$2 \text{ Ma} = \text{Fcos}\theta - \text{T} \rightarrow (1)$$

M:
$$Ma = T \rightarrow (2)$$

Adding(1) an (2) we get, $3 \text{ Ma} = \text{Fcos}\theta$

$$\Rightarrow a = \frac{F\cos\theta}{3M}$$

Back to (1):


$$T = F\cos\theta - 2Ma = F\cos\theta - (2M)\left(\frac{F\cos\theta}{3M}\right)$$

$$= \frac{1}{3}F\cos\theta = \frac{1}{3} \times 15 \times \cos 30^{\circ} = 4.3 \text{ N}$$

King Fahd University of Petroleum and Minerals Physics Department

Q15.

The two blocks shown in Figure 5 are released from rest and are observed to have an acceleration of 1.5 m/s². What is the magnitude of the frictional force on the block that slides horizontally? Assume the pulleys and strings are massless, and take M = 1.4 kg.

Ans:

$$\begin{array}{l} \text{Ma} = \text{T} - f_k \\ 2\text{Ma} = 2\text{Mg} - \text{T} \end{array} \} \\ \longleftrightarrow 3Ma = 2Mg - f_k$$

$$\Rightarrow f_k = (2g - 3a)M = (19.6 - 4.5)(1.4) = 21 \text{ N}$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

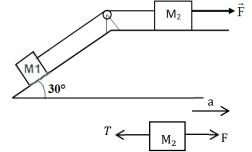
Q16.

An 80-kg man stands in an elevator that has a downward acceleration of 1.5 m/s². The magnitude of the force exerted by the man on the floor of the elevator is

- A) 664 N
- B) 784 N
- C) 904 N
- D) 388 N
- E) zero

$$-Ma = F_N - Mg$$

$$\Rightarrow$$
 F_N = M(g - a) = (80)(9.8 - 1.5) = 664 N

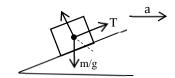

Phys101	First Major-163	Zero Version
Coordinator: Dr. M. Al-Kuhaili	Sunday, July 23, 2017	Page: 8

Q17.

Two blocks with masses $M_1 = 3.0$ kg and $M_2 = 5.0$ kg are connected by a light rope and move on a frictionless surface, as shown in **Figure 6**. A force F = 20 N acts on M_2 as shown in the figure. Find the magnitude of the acceleration of the system.

A) 0.66 m/s^2

- B) 2.6 m/s^2
- C) 1.8 m/s^2
- D) 4.3 m/s^2
- E) 0.86 m/s^2


Ans:

$$M_1 a = T - M_1 g sin \theta \rightarrow (1)$$

$$M_2a = F - T \rightarrow (2)$$

Adding (1) and (2) we get

$$(M_1 + M_2)a = F - M_1 g sin \theta$$

$$a = \frac{F - M_1 g \sin \theta}{M_1 + M_2} = \frac{20 - \left(3 \times 9.8 \times \frac{1}{2}\right)}{8} = 0.66 \text{ m/s}^2$$

Q18.

A car moves on a level horizontal road in a circle of radius 40 m. The coefficient of static friction between tires and road is 0.50. The maximum speed with which this car can round this curve without sliding is

A) 14 m/s

- B) 12 m/s
- C) 16 m/s
- D) 10 m/s
- E) 18 m/s

$$ma = F_{net}$$

$$\frac{mv^2}{R} = f_s$$

$$\frac{mv_{max}^2}{R} = f_{s,max} = \mu_s F_N = \mu_s mg$$

$$\Rightarrow v_{max} = \sqrt{\mu_{\rm s} \cdot R \cdot g} = \sqrt{0.5 \times 40 \times 9.8} = 14 \, m/s$$

Phys101	First Major-163	Zero Version
Coordinator: Dr. M. Al-Kuhaili	Sunday, July 23, 2017	Page: 9

Q19.

Which of the following statements is **TRUE**?

- A) A particle can be in equilibrium and yet moving.
- B) A stone that has been thrown vertically upward reverses its acceleration as it reaches the top of its trajectory.
- C) Two vectors of unequal magnitudes can add up to zero.
- D) On a displacement-time graph, a straight line with positive slope indicates motion at increasing speed.
- E) The action and reaction forces act on the same object.

Ans:

A

Q20.

Which of the following statements is **TRUE**?

- A) A car can be accelerating while moving at constant speed.
- B) If an object is released from rest, it falls 9.8 m during the first second of its motion.
- C) The velocity of a projectile equals its initial velocity added to a constant horizontal velocity.
- D) A particle can move with uniform velocity along a circular path.
- E) The velocity of a projectile at the top of its trajectory is zero.

Ans:

 \mathbf{A}