Phys101	First Major-162	Zero Version
Coordinator: Dr. Kunwar S.	Wednesday, March 01, 2017	Page: 1

Q1.

The velocity of a particle is time dependent and is given by the equation:

 $v = At^2 + \frac{B}{A}$. Where, *t* is time and *A* and *B* are unknown quantities. Find the dimension of *B*.

A) L^{2}/T^{4} B) T/LC) T^{3}/L^{3} D) L/T^{4} E) $L^{2}T^{2}$

Ans:

$$At^{2} = v \Rightarrow At^{2} = \frac{L}{T} \Rightarrow A = \frac{L}{T^{3}}$$
$$\frac{B}{A} = \frac{L}{T} \cdot A \Rightarrow B = \frac{L}{T} \cdot \frac{L}{T^{3}}$$
$$\therefore B = \frac{L^{2}}{T^{4}}$$

Q2.

When can we be certain that the average velocity of an object is always equal to its instantaneous velocity?

A) only when the velocity is constant

B) never

C) always

- D) only when the acceleration is constant
- E) only when the acceleration is changing at a constant rate

Ans:

А

Phys101	First Major-162	Zero Version
Coordinator: Dr. Kunwar S.	Wednesday, March 01, 2017	Page: 2

Q3.

Ans:

A person walks first at a constant speed of 18.0 km/h along a straight line from point A to point B and then back along the line from B to A at a constant speed of 10.8 km/h. The values of **average velocity** and **average speed** over the entire trip are **respectively**:

B → ●

A) 0 and 3.75 m/s	
B) 3.75 m/s and 4.25 m/s	
C) 4.00 m/s and 0	
D) 0 and 1.35 m/s	
E) 2.67 m/s and 2.67 m/s	
$v_0 = \frac{18 \times 1000}{60 \times 60} = 5 \text{ m/s}$	Х
$v = \frac{10.8 \times 1000}{60 \times 60} = 3 \text{ m/s}$	
Average velocity $= \frac{\Delta x}{\Delta t} = \frac{x - x}{\Delta t} = 0$ m/s	
Average speed = $\frac{x + x}{t_0 + t} = \frac{2x}{\frac{x}{v_0} + \frac{x}{v}} = \frac{2x}{\frac{x}{5} + \frac{x}{3}} = \frac{2 \times 15}{8}$	
$\therefore \text{ Average speed} = \frac{15}{4} = 3.75 \text{ m/s}$	

Q4.

Starting from the origin, a body moves from rest along the positive x-axis. It accelerates with 6.00 m/s^2 for the first 4.00s, and then travels with constant speed for another 4.00s. The total distance covered by the particle is:

<mark>A) 144 m</mark>

B) 319 m

- C) 96.5 m
- D) 912 m

E) 588 m

Ans:

$$v_1 = v_{01} + at_1$$

$$v_{1} = 0 + 6 \times 4 \implies v_{1} = 24 \text{ m/s}$$

$$x_{1} = v_{01}t + \frac{1}{2}at_{1} = 0 + \frac{1}{2} \times 6 \times 4^{2} = 48 \text{ m}$$

$$x_{1} = v_{2}t_{2} = v_{1}t_{2} = 24 \times 4 = 96 \text{ m}$$

$$\therefore x = x_{1} + x_{2} = 48 + 96 = 144 \text{ m}$$

Phys101	First Major-162	Zero Version
Coordinator: Dr. Kunwar S.	Wednesday, March 01, 2017	Page: 3

Q5.

A rigid ball traveling in a straight line along the positive *x*-axis hits a solid wall and suddenly rebounds during a brief instant. The ball's velocity as a function of time is shown in **Figure 1**. Find the displacement of the ball for the first 20.0s.

Δ -750 m	Figure 1
B) 150 m	v_x (m/s) 30.0
C) 25.0 m	20.0
D) -150 m	20.0
E) 325 m	10.0
	O 5.0 10.0 15.0 20.0 t (s)
	-10.0
$\Delta X =$ Area under the curve	-20.0

$$= \frac{1}{2} \times 5 \times 30 + \frac{1}{2} \times (20 - 5)(-20) = 75 - 150$$

$$\overrightarrow{\Delta X} = -75 \text{ m}$$

Q6.

Ans:

Ans:

An object falls from a bridge that is 45 m above the water. It falls directly into a small boat, moving with constant speed v as shown in **Figure 2**. The boat was 12 m away from the point of impact (the point at which the object falls on the boat) when the object was released. What is the speed v of the boat? [Ignore air resistance.]

c-20-n-15-s-0-e-0-fg-1-fo-0

Phys101	First Major-162	Zero Version
Coordinator: Dr. Kunwar S.	Wednesday, March 01, 2017	Page: 4

Q7.

A horse in an open field runs 12.0 m east and then 28.0 m in a direction 50.0° west of north. How far and in what direction must the horse then run to end up 10.0 m south of its original starting point?

Q8.

Consider two non-zero vectors \vec{A} and \vec{B} . If $\left| \vec{A} - \vec{B} \right| = \left| \vec{A} \right| + \left| \vec{B} \right|$, then:

A) $ec{A}$ and $ec{B}$ are parallel and in the opposite direction

- B) \vec{A} and \vec{B} are parallel and in the same direction
- C) the angle between \vec{A} and \vec{B} is 45°
- D) the angle between \vec{A} and \vec{B} is 60°
- E) \vec{A} is perpendicular to \vec{B}

Ans:

А

Phys101	First Major-162	Zero Version
Coordinator: Dr. Kunwar S.	Wednesday, March 01, 2017	Page: 5

Q9.

Consider vectors $\vec{A}=5.0\hat{i}-6.5\hat{j}$ and $\vec{B}=-3.5\hat{i}+7.0\hat{j}$. A third vector \vec{C} lies in the *xy*-plane and is perpendicular to the vector \vec{A} . If the scalar product of \vec{C} with \vec{B} is 15.0, find the vector \vec{C} .

A) $8.0\hat{i} + 6.1\hat{j}$ B) $3.0\hat{i} + 4.3\hat{j}$ C) $7.2\hat{i} + 1.4\hat{j}$ D) $1.0\hat{i} + 1.0\hat{j}$ E) $4.5\hat{i} + 9.3\hat{j}$

Ans:

$$\vec{C} = C_X \hat{i} + C_y \hat{j}$$

$$\vec{A} \cdot \vec{C} = 0$$

$$5C_X - 6.5C_y = 0$$

$$C_X = \frac{6.5}{5}C_y = 1.3 C_y$$

$$\vec{C} \cdot \vec{B} = 15 \implies -3.5C_X + 7C_y = 15$$

$$-3.5 \times 1.3C_y + 7C_y = 15 \implies 2.45C_y = 15 \implies C_y = 6.1$$

$$C_X = 1.5 \times 3.1 = 8.0$$

Q10.

Vector \vec{A} has magnitude of 12.0 units and vector \vec{B} has magnitude 16.0 units. If $\vec{A}.\vec{B}$ = 90.0 units, what is the magnitude of the vector product between these two vectors?

A) 170
B) 180
C) 120
D) 140
E) 130

Ans:

$$|\vec{A}||\vec{B}|\cos\theta = 90 \Rightarrow 12 \times 16\cos\theta = 90$$
$$\theta = \cos^{-1}\left(\frac{90}{12 \times 16}\right) = 1.08 \text{ rad}$$
$$|\vec{A} \times \vec{B}| = |A||B|\cos\theta$$
$$|\vec{A} \times \vec{B}| = 12 \times 16\cos\theta = 170$$

Phys101	First Major-162	Zero Version
Coordinator: Dr. Kunwar S.	Wednesday, March 01, 2017	Page: 6

Q11.

A particle moves so that its position (in meters) as a function of time (in seconds) is: $\vec{r} = 3.0t^2 \hat{i} + 2.0t^3 \hat{j} + 5.0t \hat{k}$. Find the magnitude of average acceleration for the interval t = 0 s to t = 3.0 s.

Ans:

$$\vec{r}(t) = 3t^{2}\hat{i} + 2t^{3}\hat{j} + 5t\hat{k}$$
$$\vec{v}(t) = \frac{d\vec{r}}{dt} = 6t\hat{i} + 6t^{2}\hat{j} + 5\hat{k}$$
$$\vec{a} = \frac{v(3) - v(0)}{3 - 0} = \frac{18\hat{i} + 54\hat{j} + 5\hat{k} - 5\hat{k}}{3}$$
$$\vec{a} = 6\hat{i} + 18\hat{j} \Rightarrow |\vec{a}| = \sqrt{6^{2} + 18^{2}} = 19 \text{ m/s}^{2}$$

Q12.

A particle starts from the origin at time t = 0 s with a velocity $\vec{v} = 7.0\hat{i}$ m/s. It moves in the *xy*plane with a constant acceleration $\vec{a} = (-9.0\hat{i} + 3.0\hat{j})$ m/s². At the time the particle reaches the maximum *x*-coordinate, what is its position vector?

A) $(2.7\hat{i}+0.91\hat{j}) \text{ m}$ B) $(3.5\hat{i}+1.1\hat{j}) \text{ m}$ C) $(-9.0\hat{i}+3.0\hat{j}) \text{ m}$ D) $7.0\hat{i} \text{ m}$ E) $(2.7\hat{i}+3.0\hat{j}) \text{ m}$

Ans:

$$v_{x} = v_{0x} + a_{x}t$$

$$0 = 7 - 9t \Rightarrow t = \frac{7}{9}s$$

$$x = v_{0x}t + \frac{1}{2}at^{2} = 7 \times \frac{7}{9} + \frac{1}{2} \times (-9) \times \frac{7^{2}}{9^{2}} = 2.7 \text{ m}$$

$$y = v_{0y}t + \frac{1}{2}a_{y}t^{2} = 0 + \frac{1}{2} \times 3 \cdot \frac{7^{2}}{9^{2}} = 0.91 \text{ m}$$

Phys101	First Major-162	Zero Version
Coordinator: Dr. Kunwar S.	Wednesday, March 01, 2017	Page: 7

Q13.

A ball is thrown horizontally from a height of 26 m and hits the ground with a speed that is three times its initial speed. What is the initial speed of the ball? [Ignore air resistance.]

Q14.

A particle undergoes a uniform circular motion. Which one of the following statements is **False** in regards to the particle and its motion?

A) The velocity is constant.

- B) The velocity and acceleration are always perpendicular to each other.
- C) The acceleration is always directed towards the center.
- D) The magnitude of change in velocity in half time-period is two times the speed.
- E) The displacement for half time-period is maximum.

Ans:

A

Phys101	First Major-162	Zero Version
Coordinator: Dr. Kunwar S.	Wednesday, March 01, 2017	Page: 8

Q15.

Ans:

A person walks up a stalled (not moving) escalator of length L in 90 s. When standing on the same escalator, now moving, the person is carried up in 60 s. How much time would it take that person to walk up the moving escalator?

4	A) 36	<mark>s</mark>		
E	3) 25	S		
(2) 46	S		
[D) 57	S		
E	E) 19	S		
$v_{PE} = \frac{1}{9}$	$\frac{L}{0}$			
$v_{EG} = \frac{1}{6}$	$\frac{L}{0}$			
$v_{PE} = v$	$P_{PG} - i$	⁹ EG		
$v_{PG} = v_{PG}$	$p_G + v$	$_{EG} =$	$\frac{L}{90} +$	$\frac{L}{60}$
$v_{PG} = \frac{2}{2}$	L + 3L +	$\frac{L}{18} = \frac{5}{18}$	L 80	
$\therefore t = \frac{l}{v_l}$	$\frac{L}{r_G} = \frac{1}{r_G}$	$L \times 18$ 5L	$\frac{0}{-}=3$	86 s