Phys101	First Major-161	Zero Version
Coordinator: Dr. Ayman S. El-Said	Wednesday, October 12, 2016	Page: 1

Q1.

Van der Wall's equation of state for gases is given by

$$(P + \frac{a}{V^2})(V - b) = RT$$

Where, *P* is the pressure (kg/m.s²), *V* is the volume (m³) and *T* is the temperature (K). *a*, *b* and *R* are constants. The dimension of "*a*" is

A) ML⁵T⁻²
B) L²T⁻²
C) L⁶
D) ML⁻¹T⁻²
E) ML²T⁻²

Ans:

$$\frac{[a]}{[v^2]} = [P]$$

[a] = ML⁻¹T⁻²L⁶ = ML⁵T⁻²

Q2.

Which ONE of the following statements is TRUE?

- A) The instantaneous velocity of a particle is always directed along the tangent to the particle's path at the particle's position.
- B) If the "velocity versus time" graph of an object is a horizontal line, that object is accelerating.
- C) It is physically impossible for an object to have a negative acceleration and yet be speeding up.
- D) Average speed is always less than the magnitude of average velocity.
- E) In projectile motion, the vertical acceleration is zero at the maximum height.

Ans:

A

Q3.

Figure 1 gives the velocity as a function of time for a particle moving along an x- axis. Dot 1 is at the highest point on the curve, dot 4 is at the lowest point, and dots 2 and 6 are at the same height. At which point(s) does the particle change its direction?

Ans:

A

Phys101	First Major-161	Zero Version
Coordinator: Dr. Ayman S. El-Said	Wednesday, October 12, 2016	Page: 2

Q4.

From t = 0 to t = 5.00 min, a man stands still, and from t = 5.00 min to t = 10.0 min, he walks in a straight line at a constant speed of 2.20 m/s. What is the average velocity v_{avg} in the time interval 3.00 min to 9.00 min?

A)	1.47 m/s
B)	2.20 m/s
C)	1.83 m/s
D)	3.67 m/s
E)	4.40 m/s

Ans:

 $\Delta t = 9 - 3 \min = 360 \text{ s}$ $\Delta t' = 9 - 5 \min = 240 \text{ s}$ $x_2 = V\Delta t' = 2.2 \times (240 \text{ s}) = 528 \text{ m}$ $x_1 = 0$ $V_{av} = \frac{x_2 - x_1}{\Delta t} = \frac{528}{360} = 1.47 \text{ m/s}$

Q5.

An object falls a distance h from rest. If it travels 0.50 h in the last 1.00 s, the height h of its fall is

A) 57.1 m
B) 32.6 m
C) 1.68 m
D) 85.1 m
E) 4.90 m

Ans:

$$h = \frac{1}{2} g t^{2} \rightarrow (1)$$
$$t = \sqrt{\frac{2h}{g}}$$

$$\frac{h}{2} = \frac{1}{2}g(t-1)^2 \rightarrow (2)$$
$$\frac{h}{2} = \frac{1}{2}g\left(\sqrt{\frac{2h}{g}} - 1\right)^2 \Rightarrow h = 57.1 \text{ m}$$

c-20-n-15-s-0-e-0-fg-1-fo-0

Phys101	First Major-161	Zero Version
Coordinator: Dr. Ayman S. El-Said	Wednesday, October 12, 2016	Page: 3

Q6.

A particle starts from the origin at t = 0 and moves along the positive x-axis. A graph of the velocity of the particle as a function of the time is shown in Figure 2; where the v-axis scale is set by $v_s = 4.0$ m/s. What is the average acceleration of the particle between t = 1.0 s and t = 4.0 s?

Ans:

$$a_{av} = \frac{\Delta v}{\Delta t} = \frac{4-2}{4-1} = 0.67 \text{ m/s}^2$$

Q7.

A cube of edge length L is placed so that one corner is at the origin and three edges are along the x-, y-, and z-axes of a coordinate system (see Figure 3). What is the angle between the edge along the z-axis (line ab) and the diagonal from the origin to the opposite corner (line ad)?

Phys101	First Major-161	Zero Version
Coordinator: Dr. Ayman S. El-Said	Wednesday, October 12, 2016	Page: 4

If $\vec{A} = 1.0\hat{i} + 4.0\hat{j}$, $\vec{B} = -1.0\hat{j} + 2.0\hat{k}$ and $\vec{C} = 5.0\hat{i} - 1.0\hat{k}$. What is $2\vec{A}.[(\vec{B} \times \vec{A}) + \vec{C}]?$ A) 10 B) Zero C) 28 D) 1.0 E) -32 $\vec{B} \times \vec{A} = \hat{k} + 2\hat{j} - 8\hat{i}$ $(\vec{B} \times \vec{A}) + \vec{C} = -3\hat{i} + 2\hat{j}$ $2\vec{A} \cdot [(\vec{B} \times \vec{A}) + \vec{C}] = -6 + 16 = 10$

Q9.

Ans:

The two vectors \vec{d}_1 and \vec{d}_2 lie in an x-y plane, as shown in **Figure 4**. What is the sign of the y component of $(\vec{d}_1 + \vec{d}_2)$, $(\vec{d}_1 - \vec{d}_2)$, and $(\vec{d}_2 - \vec{d}_1)$, respectively?

Phys101	First Major-161	Zero Version
Coordinator: Dr. Ayman S. El-Said	Wednesday, October 12, 2016	Page: 5

Q10.

Three displacement vectors $(\vec{A}, \vec{B} \text{ and } \vec{C})$ are shown in Figure 5, where the magnitude of the vectors are A = 20.0 cm, B = 40.0 cm and C = 30.0 cm. Find the resultant vector.

A) (43.3 \hat{i} + 22.3 \hat{j}) cm B) $(54.3 \hat{i} + 18.3 \hat{j})$ cm C) $(54.3 \hat{i} + 28.3 \hat{j})$ cm D) (28.3 \hat{i} + 28.3 \hat{j}) cm E) $(60.0 \hat{i} + 20.0 \hat{j})$ cm

Ans:

 $\vec{A} = 0 \hat{i} + 20 \hat{j}$ $\vec{B} = 4\cos 45 \hat{i} + 40\sin 45 \hat{j}$ $\vec{C} = 30 \sin 30 \ \hat{i} - 30 \cos 30 \hat{j}$ $\vec{R} = x \hat{i} + v \hat{j}$ $x = 40 \cos 45 + 30 \sin 30$ $y = 20\hat{j} + 40\sin 45 - 30\cos 30$ $\vec{R} = 43.3 \hat{i} + 22.3 \hat{j}$

Q11.

You are to launch a rocket, from just above the ground, with the following five initial velocities. Which one of them gives the rocket maximum horizontal range?

A) $(20.0\hat{i} + 20.0\hat{j})$ m/s B) $(10.2\hat{i} + 26.4\hat{j})$ m/s C) $(15.0\hat{i} + 24.0\hat{j})$ m/s D) $(25.0\hat{i} + 13.3\hat{j})$ m/s E) $(4.80\hat{i} + 27.9\hat{j})$ m/s

Ans:

Maximum horizontal range is obtained when $\theta = 45^{\circ}$

Phys101	First Major-161	Zero Version
Coordinator: Dr. Ayman S. El-Said	Wednesday, October 12, 2016	Page: 6

Q12.

Ans:

A particle leaves the origin with an initial velocity $\vec{v}_o = 2.0\hat{i}$ and a constant acceleration $\vec{a} = (-1.0\hat{i} + 2.0\hat{j})m/s^2$. By the time it reaches its maximum x coordinate, what is its average speed along y-direction?

A) 2.0 m/s
B) 3.6 m/s
C) 1.0 m/s
D) 1.6 m/s
E) 0.6 m/s
$\mathbf{v}_{\mathbf{x}} = \mathbf{v}_{0\mathbf{x}} + \mathbf{a}_{\mathbf{x}}\mathbf{t} = 0$
$a_x = -1 \Rightarrow 2 - t = 0 \Rightarrow t = 2$
$\Delta y = v_{0y}t + \frac{1}{2}a_yt^2 = 0 + \frac{1}{2} \cdot 2 \cdot 4 = 4 m$
$v_{avg} = \frac{\Delta y}{\Delta t} = \frac{4}{2} = 2.0 \text{ m/s}$

Q13.

At $t_1 = 2.0$ s, the acceleration of a particle in counterclockwise circular motion is $(6.0\hat{i} + 4.0\hat{j})m/s^2$. It moves at constant speed. At time $t_2 = 5.0$ s, the particle's acceleration is $(4.0\hat{i} - 6.0\hat{j})m/s^2$. What is the radius of the path taken by the particle if t_2 - t_1 is less than one period?

A)	<mark>2.9 m</mark>
B)	6.5 m
C)	7.2 m
D)	1.6 m
E)	0.2 m

Ans:

$$6.0\hat{i} + 4\hat{j} \Rightarrow 40\hat{i} - 60\hat{j} (3/4 \text{ Circle})$$

$$\Delta t = 5 - 2 = \frac{3}{4} T \implies T = 4s$$

$$v = \frac{2\pi r}{T}$$
, $a = \frac{v^2}{r} \Rightarrow r = \frac{4\pi^2 r^2}{aT^2} \Rightarrow r = \frac{aT^2}{4\pi^2} = \frac{(\sqrt{6^2 + 4^2})4^2}{4\pi^2} = 2.9 m$

Phys101	First Major-161	Zero Version
Coordinator: Dr. Ayman S. El-Said	Wednesday, October 12, 2016	Page: 7

Q14.

After flying for 15 min in a wind blowing 44 km/h at an angle of 30° south of east, an airplane pilot is over a town that is 55 km due north of the starting point. What is the speed of the airplane relative to the wind?

A)	245	km/h

- B) 38.1 km/h
- C) 202 km/h
- D) 220 km/h E) 44.0 km/h

Ans:

$$\begin{split} \vec{V}_{PG} &= \vec{V}_{PW} + \vec{V}_{WG} \\ \vec{V}_{PW} &= \vec{V}_{PG} - \vec{V}_{WG} \\ \vec{V}_{PW} &= 220\hat{j} - (44\cos 30\hat{i} - 44\sin 30\hat{j}) \\ \vec{V}_{PW} &= -38.1\hat{i} + 242\hat{j} \\ \\ \left| \vec{V}_{PW} \right| &= 245 \end{split}$$

Q15.

Ans:

You throw a ball from a window at a height h = 10.0 m above the ground, with an initial speed of 20 m/s at an angle 30° below the horizontal, see Figure 6. At what horizontal distance d will the ball hit the ground? Ignore air resistance.

A) 12.7 m	Figure 6
 B) 34.6 m C) 22.4 m D) 10.0 m E) 20.0 m 	h = 10.0 m
$y = V_0 \sin\theta_0 t - \frac{1}{2}gt^2$	← d►
$-10 = -20 \cdot \frac{1}{2} t - 4.9 t^2$	
$4.9 t^2 - 10 t - 10 = 0$	
$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = 0.73 \text{ s}$	
$x = v_{0x}t = 20 \cos 30(0.73 s) = 12.7 m$	