Q1.

Van der Wall's equation of state for gases is given by

$$
\left(P+\frac{a}{V^{2}}\right)(V-b)=R T
$$

Where, P is the pressure $\left(\mathrm{kg} / \mathrm{m} \cdot \mathrm{s}^{2}\right), V$ is the volume $\left(\mathrm{m}^{3}\right)$ and T is the temperature (K). a, b and R are constants. The dimension of " a " is
A) $\mathrm{ML}^{5} \mathrm{~T}^{-2}$
B) $\mathrm{L}^{2} \mathrm{~T}^{-2}$
C) L^{6}
D) $M L^{-1} \mathrm{~T}^{-2}$
E) $\mathrm{ML}^{2} \mathrm{~T}^{-2}$

Ans:

$$
\begin{aligned}
& \frac{[\mathrm{a}]}{\left[\mathrm{v}^{2}\right]}=[\mathrm{P}] \\
& {[\mathrm{a}]=\mathrm{ML}^{-1} \mathrm{~T}^{-2} \mathrm{~L}^{6}=\mathrm{ML}^{5} \mathrm{~T}^{-2}}
\end{aligned}
$$

Q2.

Which ONE of the following statements is TRUE?
A) The instantaneous velocity of a particle is always directed along the tangent to the particle's path at the particle's position.
B) If the "velocity versus time" graph of an object is a horizontal line, that object is accelerating.
C) It is physically impossible for an object to have a negative acceleration and yet be speeding up.
D) Average speed is always less than the magnitude of average velocity.
E) In projectile motion, the vertical acceleration is zero at the maximum height.

Ans:

A

Q3.
Figure 1 gives the velocity as a function of time for a particle moving along an x - axis. Dot $\mathbf{1}$ is at the highest point on the curve, dot $\mathbf{4}$ is at the lowest point, and dots $\mathbf{2}$ and $\mathbf{6}$ are at the same height. At which point(s) does the particle change its direction?
A) 3 and 5
B) 1 and 4
C) 2 and 6
D) 3 only
E) 1 only

Figure 1

Ans:

A

Q4.
From $t=0$ to $t=5.00 \mathrm{~min}$, a man stands still, and from $t=5.00 \mathrm{~min}$ to $t=10.0 \mathrm{~min}$, he walks in a straight line at a constant speed of $2.20 \mathrm{~m} / \mathrm{s}$. What is the average velocity $v_{\text {avg }}$ in the time interval 3.00 min to 9.00 min ?
A) $1.47 \mathrm{~m} / \mathrm{s}$
B) $2.20 \mathrm{~m} / \mathrm{s}$
C) $1.83 \mathrm{~m} / \mathrm{s}$
D) $3.67 \mathrm{~m} / \mathrm{s}$
E) $4.40 \mathrm{~m} / \mathrm{s}$

Ans:
$\Delta t=9-3 \mathrm{~min}=360 \mathrm{~s}$
$\Delta \mathrm{t}^{\prime}=9-5 \mathrm{~min}=240 \mathrm{~s}$
$\mathrm{x}_{2}=\mathrm{V} \Delta \mathrm{t}^{\prime}=2.2 \times(240 \mathrm{~s})=528 \mathrm{~m}$
$\mathrm{x}_{1}=0$
$\mathrm{V}_{\mathrm{av}}=\frac{\mathrm{x}_{2}-\mathrm{x}_{1}}{\Delta \mathrm{t}}=\frac{528}{360}=1.47 \mathrm{~m} / \mathrm{s}$

Q5.
An object falls a distance h from rest. If it travels $0.50 h$ in the last 1.00 s , the height h of its fall is
A) 57.1 m
B) 32.6 m
C) 1.68 m
D) 85.1 m
E) 4.90 m

Ans:

$\mathrm{h}=\frac{1}{2} \mathrm{~g} t^{2} \quad \rightarrow(1)$
$\mathrm{t}=\sqrt{\frac{2 \mathrm{~h}}{g}}$
$\frac{\mathrm{h}}{2}=\frac{1}{2} \mathrm{~g}(\mathrm{t}-1)^{2} \rightarrow(2)$
$\frac{\mathrm{h}}{2}=\frac{1}{2} \mathrm{~g}\left(\sqrt{\frac{2 \mathrm{~h}}{g}}-1\right)^{2} \Rightarrow \mathrm{~h}=57.1 \mathrm{~m}$

Q6.
A particle starts from the origin at $t=0$ and moves along the positive x -axis. A graph of the velocity of the particle as a function of the time is shown in Figure 2; where the v-axis scale is set by $v_{\mathrm{s}}=4.0 \mathrm{~m} / \mathrm{s}$. What is the average acceleration of the particle between $t=1.0 \mathrm{~s}$ and $t=4.0 \mathrm{~s}$?

Figure 2
A) $0.67 \mathrm{~m} / \mathrm{s}^{2}$
B) $11 \mathrm{~m} / \mathrm{s}^{2}$
C) $2.0 \mathrm{~m} / \mathrm{s}^{2}$
D) zero
E) $6.0 \mathrm{~m} / \mathrm{s}^{2}$

Ans:

$\mathrm{a}_{\mathrm{av}}=\frac{\Delta \mathrm{v}}{\Delta \mathrm{t}}=\frac{4-2}{4-1}=0.67 \mathrm{~m} / \mathrm{s}^{2}$

Q7.

A cube of edge length \mathbf{L} is placed so that one corner is at the origin and three edges are along the x-, y-, and z-axes of a coordinate system (see Figure 3). What is the angle between the edge along the z-axis (line $a b$) and the diagonal from the origin to the opposite corner (line $a d$)?
A) 54.7°
B) 45.0°
C) 60.0°
D) 22.5°
E) 30.0°

Ans:

$$
\begin{aligned}
& \overrightarrow{\mathrm{A}}=\overrightarrow{\mathrm{ab}}=\mathrm{L} \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{~B}}=\overrightarrow{\mathrm{ad}}=\mathrm{L} \hat{\imath}+\mathrm{L} \hat{\jmath}+\mathrm{L} \hat{\mathrm{k}} \\
& \cos \phi=\frac{\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{~B}}}{\mathrm{AB}}=\frac{\mathrm{L}^{2}}{\mathrm{~L}^{2} \sqrt{3}} \\
& \cos \phi=\frac{1}{\sqrt{3}}=54.7^{\circ}
\end{aligned}
$$

Phys101	First Major-161	Zero Version
Coordinator: Dr. Ayman S. El-Said	Wednesday, October 12, 2016	Page: 4

Q8.
If $\quad \vec{A}=1.0 \hat{i}+4.0 \hat{j}, \quad \vec{B}=-1.0 \hat{j}+2.0 \hat{k} \quad$ and $\quad \vec{C}=5.0 \hat{i}-1.0 \hat{k} . \quad$ What is $2 \vec{A} \cdot[(\vec{B} \times \vec{A})+\vec{C}]$?
A) 10
B) Zero
C) 28
D) 1.0
E) -32

Ans:
$\vec{B} \times \vec{A}=\hat{k}+2 \hat{\jmath}-8 \hat{\imath}$
$(\overrightarrow{\mathrm{B}} \times \overrightarrow{\mathrm{A}})+\overrightarrow{\mathrm{C}}=-3 \hat{\imath}+2 \hat{\jmath}$
$2 \vec{A} \cdot[(\vec{B} \times \vec{A})+\vec{C}]=-6+16=10$

Q9.

The two vectors \vec{d}_{1} and \vec{d}_{2} lie in an x-y plane, as shown in Figure 4. What is the sign of the y component of $\left(\vec{d}_{1}+\vec{d}_{2}\right),\left(\vec{d}_{1}-\vec{d}_{2}\right)$, and $\left(\vec{d}_{2}-\vec{d}_{1}\right)$, respectively?
A) positive, negative, positive
B) negative, negative, positive
C) positive, positive, positive
D) positive, positive, negative
E) negative, positive, negative

Ans:
A

Q10.

Three displacement vectors ($\overrightarrow{\boldsymbol{A}}, \overrightarrow{\boldsymbol{B}}$ and $\overrightarrow{\boldsymbol{C}}$) are shown in Figure 5, where the magnitude of the vectors are $A=20.0 \mathrm{~cm}, B=40.0 \mathrm{~cm}$ and $C=30.0 \mathrm{~cm}$. Find the resultant vector.
A) $(43.3 \hat{i}+22.3 \hat{j}) \mathrm{cm}$
B) $(54.3 \hat{i}+18.3 \hat{j}) \mathrm{cm}$
C) $(54.3 \hat{i}+28.3 \hat{j}) \mathrm{cm}$
D) $(28.3 \hat{i}+28.3 \hat{j}) \mathrm{cm}$
E) $(60.0 \hat{i}+20.0 \hat{j}) \mathrm{cm}$

Ans:
$\overrightarrow{\mathrm{A}}=0 \hat{\imath}+20 \hat{\jmath}$

$\vec{B}=4 \cos 45 \hat{\imath}+40 \sin 45 \hat{\jmath}$
$\overrightarrow{\mathrm{C}}=30 \sin 30 \hat{\imath}-30 \cos 30 \hat{\jmath}$
$\overrightarrow{\mathrm{R}}=\mathrm{x} \hat{\imath}+y \hat{\jmath}$
$x=40 \cos 45+30 \sin 30$
$y=20 \hat{\jmath}+40 \sin 45-30 \cos 30$
$\overrightarrow{\mathrm{R}}=43.3 \hat{\imath}+22.3 \hat{\mathrm{j}}$

Q11.

You are to launch a rocket, from just above the ground, with the following five initial velocities. Which one of them gives the rocket maximum horizontal range?
A) $(20.0 \hat{i}+20.0 \hat{j}) \mathrm{m} / \mathrm{s}$
B) $(10.2 \hat{i}+26.4 \hat{j}) \mathrm{m} / \mathrm{s}$
C) $(15.0 \hat{i}+24.0 \hat{j}) \mathrm{m} / \mathrm{s}$
D) $(25.0 \hat{i}+13.3 \hat{j}) \mathrm{m} / \mathrm{s}$
E) $(4.80 \hat{i}+27.9 \hat{j}) \mathrm{m} / \mathrm{s}$

Ans:

Maximum horizontal range is obtained when $\theta=45^{\circ}$

Q12.

A particle leaves the origin with an initial velocity $\vec{v}_{o}=2.0 \hat{i}$ and a constant acceleration $\vec{a}=(-1.0 \hat{i}+2.0 \hat{j}) \mathrm{m} / \mathrm{s}^{2}$. By the time it reaches its maximum x coordinate, what is its average speed along y-direction?
A) $2.0 \mathrm{~m} / \mathrm{s}$
B) $3.6 \mathrm{~m} / \mathrm{s}$
C) $1.0 \mathrm{~m} / \mathrm{s}$
D) $1.6 \mathrm{~m} / \mathrm{s}$
E) $0.6 \mathrm{~m} / \mathrm{s}$

Ans:

$v_{x}=v_{0 x}+a_{x} t=0$
$\mathrm{a}_{\mathrm{x}}=-1 \Rightarrow 2-\mathrm{t}=0 \Rightarrow \mathrm{t}=2$
$\Delta \mathrm{y}=\mathrm{v}_{0 \mathrm{y}} \mathrm{t}+\frac{1}{2} a_{y} \mathrm{t} 2=0+\frac{1}{2} \cdot 2 \cdot 4=4 \mathrm{~m}$
$v_{\text {avg }}=\frac{\Delta y}{\Delta \mathrm{t}}=\frac{4}{2}=2.0 \mathrm{~m} / \mathrm{s}$

Q13.

At $t_{1}=2.0 \mathrm{~s}$, the acceleration of a particle in counterclockwise circular motion is $(6.0 \hat{i}+4.0 \hat{j}) \mathrm{m} / \mathrm{s}^{2}$. It moves at constant speed. At time $t_{2}=5.0 \mathrm{~s}$, the particle's acceleration is $(4.0 \hat{i}-6.0 \hat{j}) \mathrm{m} / \mathrm{s}^{2}$. What is the radius of the path taken by the particle if $t_{2}-t_{1}$ is less than one period?
A) 2.9 m
B) 6.5 m
C) 7.2 m
D) 1.6 m
E) 0.2 m

Ans:

$$
\begin{aligned}
& 6.0 \hat{\imath}+4 \hat{\jmath} \Rightarrow 40 \hat{\imath}-60 \hat{\jmath}(3 / 4 \text { Circle }) \\
& \Delta t=5-2=\frac{3}{4} T \Rightarrow T=4 \mathrm{~s} \\
& v=\frac{2 \pi r}{T}, a=\frac{v^{2}}{r} \Rightarrow r=\frac{4 \pi^{2} r^{2}}{a^{2}} \Rightarrow r=\frac{\mathrm{aT}^{2}}{4 \pi^{2}}=\frac{\left(\sqrt{6^{2}+4^{2}}\right) 4^{2}}{4 \pi^{2}}=2.9 \mathrm{~m}
\end{aligned}
$$

Q14.

After flying for 15 min in a wind blowing $44 \mathrm{~km} / \mathrm{h}$ at an angle of 30° south of east, an airplane pilot is over a town that is 55 km due north of the starting point. What is the speed of the airplane relative to the wind?
A) $245 \mathrm{~km} / \mathrm{h}$
B) $38.1 \mathrm{~km} / \mathrm{h}$
C) $202 \mathrm{~km} / \mathrm{h}$
D) $220 \mathrm{~km} / \mathrm{h}$
E) $44.0 \mathrm{~km} / \mathrm{h}$

Ans:

$$
\begin{aligned}
& \vec{V}_{P G}=\vec{V}_{P W}+\vec{V}_{\mathrm{WG}} \\
& \vec{V}_{P W}=\vec{V}_{P G}-\vec{V}_{\mathrm{WG}} \\
& \overrightarrow{\mathrm{~V}}_{\mathrm{PW}}=220 \hat{\jmath}-(44 \cos 30 \hat{\imath}-44 \sin 30 \hat{\jmath}) \\
& \vec{V}_{\mathrm{PW}}=-38.1 \hat{\imath}+242 \hat{\jmath} \\
& \left|\vec{V}_{\mathrm{PW}}\right|=245
\end{aligned}
$$

Q15.

You throw a ball from a window at a height $\mathrm{h}=10.0 \mathrm{~m}$ above the ground, with an initial speed of $20 \mathrm{~m} / \mathrm{s}$ at an angle 30° below the horizontal, see Figure 6. At what horizontal distance d will the ball hit the ground? Ignore air resistance.
A) 12.7 m
B) 34.6 m
C) 22.4 m
D) 10.0 m
E) 20.0 m

Ans:

$$
\begin{aligned}
& y=V_{0} \sin \theta_{0} t-\frac{1}{2} \mathrm{gt}^{2} \\
& -10=-20 \cdot \frac{1}{2} t-4.9 \mathrm{t}^{2} \\
& 4.9 \mathrm{t}^{2}-10 \mathrm{t}-10=0 \\
& \mathrm{t}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}=0.73 \mathrm{~s} \\
& \mathrm{x}=\mathrm{v}_{0 \mathrm{x}} \mathrm{t}=20 \cos 30(0.73 \mathrm{~s})=12.7 \mathrm{~m}
\end{aligned}
$$

