Phys101	First Major-151	Zero Version
Coordinator: Prof. Dr. I. Nasser	Monday, September 14, 2015	Page: 1

Q1.
The body mass index (BMI) of a person is calculated in SI units using the formula:

$$
\mathrm{BMI}=\text { weight }(\mathrm{kg}) / \text { height }^{2}\left(\mathrm{~m}^{2}\right)
$$

Find the BMI of a person (in SI units) whose weight is 160 lb (pound) and height is 70.0 inches. $(1.00$ inch $=2.54 \mathrm{~cm}, 1.00 \mathrm{lb}=454 \mathrm{~g})$.
A) 23.0
B) 16.7
C) 5.45
D) 35.0
E) 45.2

Ans:

BMI $=\frac{(160 \times 0.454)}{\left(70 \times 2.54 \times 10^{-2}\right)^{2}}=22.98$
Q2.
It is observed that the frequency $\mathrm{f}\left(\mathrm{s}^{-1}\right)$ of oscillations of a string depends upon its mass (M), length (L) and tension $\mathrm{P}\left(\mathrm{kg} . \mathrm{m} / \mathrm{s}^{2}\right)$ as follows:

$$
\mathrm{f}=\mathrm{C} \mathrm{P}^{\mathrm{a}} \mathrm{M}^{\mathrm{b}} \mathrm{~L}^{\mathrm{c}}
$$

where C is a dimensionless constant. Find the values of the constants a, b, and c (in this order)
A) $1 / 2,-1 / 2,-1 / 2$
B) $1 / 2,1 / 2,-1 / 2$
C) $-1 / 2,1 / 2,1 / 2$
D) $1 / 2,-1 / 2,1 / 2$
E) $-1 / 2,-1 / 2,1 / 2$

Ans:

$$
\begin{aligned}
& {[\mathrm{f}]=[\mathrm{P}]^{\mathrm{a}}[\mathrm{~m}]^{\mathrm{b}}[\mathrm{l}]^{\mathrm{c}} \rightarrow \mathrm{~T}^{-1}=\mathrm{M}^{\mathrm{a}} \mathrm{~L}^{\mathrm{a}} \mathrm{~T}^{-2 \mathrm{a}} \mathrm{M}^{\mathrm{b}} \mathrm{~L}^{\mathrm{c}}} \\
& \Rightarrow-2 \mathrm{a}=-1, \mathrm{a}+\mathrm{b}=0, \mathrm{a}+\mathrm{c}=0 \\
& \rightarrow a=-1 / 2, b=1 / 2, c=1 / 2
\end{aligned}
$$

Q3.
The position versus time for a certain particle moving along the x -axis is shown in Figure 1. The average velocity in the time interval 4.0 s to 7.0 s is:

Figure 1
A) $-1.7 \mathrm{~m} / \mathrm{s}$
B) Zero
C) $1.7 \mathrm{~m} / \mathrm{s}$
D) $0.80 \mathrm{~m} / \mathrm{s}$
E) $-0.80 \mathrm{~m} / \mathrm{s}$

Ans:

$$
\mathrm{v}=\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) /\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)=(-2.5-2.5) / 3=-1.7 \mathrm{~m} / \mathrm{s}
$$

Q4.
A stone is thrown outward from point A at the top of a 58.8 m high cliff with an upward velocity component of $19.6 \mathrm{~m} / \mathrm{s}$ (see Figure 2). Assume that it lands on the ground, at point B , below the cliff, and that the ground below the cliff is flat. How long was the stone in the air? [Neglect the air resistance].
A) 6.00 s
B) 5.00 s
C) 4.00 s
D) 7.00 s
E) 8.00 s

Ans:
Use the equation
$\mathrm{y}=\mathrm{v}_{\mathrm{yo}} \mathrm{t}-\frac{1}{2} \mathrm{gt}^{2}$
Figure 2

With $v_{y o}=19.6 \mathrm{~m} / \mathrm{s}, y=-58.8 \mathrm{~m}$, we have the equation:
$-58.8=39.2 \mathrm{t}-\frac{1}{2} 9.8 \mathrm{t}^{2}$ which has the solution
solve $\left[9.8 t^{2}-39.2 t-117.6=0, \quad\{t\}\right]$
$\{\{t \rightarrow .-2\},.\{t \rightarrow 6\}\},$.

Q5.
Figure 3 illustrates the motion of a particle starting from rest and moving along an x axis with a constant acceleration. The figure's vertical scaling is set by $x_{\mathrm{s}}=12 \mathrm{~m}$. The particle's acceleration is
A) $2.0 \mathrm{~m} / \mathrm{s}^{2}$
B) $0.50 \mathrm{~m} / \mathrm{s}^{2}$
C) $-6.0 \mathrm{~m} / \mathrm{s}^{2}$
D) $6.0 \mathrm{~m} / \mathrm{s}^{2}$
E) $-3.0 \mathrm{~m} / \mathrm{s}^{2}$

Ans:

$$
x-x_{0}=v_{0} t+1 / 2(a) t^{2}
$$

From the figure $x_{0}=-4$

at $\mathrm{t}=2$
$0-(-4)=2 v_{0}+2 \mathrm{a}$
$\mathrm{v}_{0}+\mathrm{a}=2$
at $t=4$
$12-(-4))=4 v_{0}+8 a$
$v_{0}+2 a=4$ (2)
From (1) and (2) $\quad a=2 \mathrm{~m} / \mathrm{s}^{2} \#$
Q6.
A ball is thrown directly downward from a height of 30.0 m . It takes 1.79 s to reach the ground. Find the magnitude of the initial velocity.
A) $7.99 \mathrm{~m} / \mathrm{s}$
B) $1.66 \mathrm{~m} / \mathrm{s}$
C) $10.0 \mathrm{~m} / \mathrm{s}$
D) $2.00 \mathrm{~m} / \mathrm{s}$
E) $3.75 \mathrm{~m} / \mathrm{s}$

Ans: $\mathrm{t}=1.79 \mathrm{~s}$
Solve the equation for v 0

$$
y-30=v 0 t-1 / 2(9.80) t^{2}
$$

for v 0 , one finds
$\mathrm{v} 0=7.99 \mathrm{~m} / \mathrm{s}$ \#

$$
\text { Solve }\left[9.8 \times 1.79^{2} / 2-v 01.79-30=0,\{v 0\}\right]
$$

$\{\{v 0 \rightarrow-7.98878\}\}$

Q7.
A man is running in a straight line (along the x-axis). The graph in Figure 4 shows the man's velocity as a function of time. During the first 12.0 s , the total distance traveled is
A) 46.0 m
B) Zero
C) 40.0 m
D) 8.00 m
E) 72.0 m

Figure 4

Ans:

Area $=2 \times 10+1 / 2 \times 10 \times 4+1 / 2 \times 2 \times 6=46 \mathrm{~m}$

Another solution

In the first 10 s
$a=0.4 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{x}-\mathrm{x}_{0}=\mathrm{v}_{0} \mathrm{t}+1 / 2 \mathrm{a}_{\mathrm{x}} \mathrm{t}^{2}$
$x-x_{0}=2 \times 10+1 / 2(0.4) 100=40 \mathrm{~m}$
during the interval 10 to 12 s , the acceleration is $-6 / 2=-3 \mathrm{~m} / \mathrm{s}^{2}$
$x-x_{0}=6 \times 2-1 / 2(3) 4=6$
The total distance travelled is $40+6=46$
Q8.
If $\vec{A}=\hat{i}-\hat{j}$ and $\vec{B}=3.0 \hat{i}+2.0 \hat{j}$, what is the angle between the two vectors? $[\hat{i}, \hat{j}$ and $\hat{\mathrm{k}}$ are the unit vectors in the x , y and z -direction, respectively]
A) 79°
B) 41°
C) 90°
D) 19°
E) 26°

Ans:

$$
\begin{aligned}
& \vec{A} \cdot \vec{B}=|A||B| \cos \psi \\
& \therefore(1-3-1 \times 2)=\sqrt{2} \sqrt{13} \cos \psi \Rightarrow \psi=79^{\circ}
\end{aligned}
$$

Phys101	First Major-151	Zero Version
Coordinator: Prof. Dr. I. Nasser	Monday, September 14, 2015	Page: 5

Q9.
A boat is sailing due East at a speed of $6.0 \mathrm{~m} / \mathrm{s}$ relative to the water of a river. The water is moving due south at a speed of $5.0 \mathrm{~m} / \mathrm{s}$ relative to the ground. What is the velocity of the boat relative to the ground in unit vectors? See Figure 5. [\hat{i}, \hat{j} and \hat{k} are the unit vectors in the x, y and z -direction, respectively]

Figure 5
A) $\overrightarrow{\mathrm{V}}_{\mathrm{bg}}=6.0 \hat{\mathrm{i}}-5.0 \hat{\mathrm{j}}$
B) $\overrightarrow{\mathrm{V}}_{\mathrm{bg}}=3.0 \hat{\mathrm{i}}-4.0 \hat{\mathrm{j}}$
C) $\overrightarrow{\mathrm{V}}_{\mathrm{bg}}=8.0 \hat{\mathrm{i}}-5.0 \hat{\mathrm{j}}$
D) $\overrightarrow{\mathrm{V}}_{\text {bg }}=6.0 \hat{\mathrm{i}}-8.0 \hat{\mathrm{j}}$
(North)
$\hat{\mathbf{j}}$
$\uparrow_{\rightarrow \mathbf{i}}$ (East)
E) $\overrightarrow{\mathrm{V}}_{\mathrm{bg}}=5.0 \hat{\mathrm{i}}-4.0 \hat{\mathrm{j}}$

Ans:
$V_{b w}=6.0 \mathrm{i}$
$V_{w g}=-5.0 j$
$\mathrm{V}_{\mathrm{bg}}=\mathrm{V}_{\mathrm{bw}}+\mathrm{V}_{\mathrm{wg}}$
$\mathrm{V}_{\mathrm{bg}}=6.0 \mathrm{i}-5.0 \mathrm{j}$
Q10.
A vector in the $x y$ plane has a magnitude of 25 and the magnitude of its x-component is 12 . The angle this vector makes with the positive y-axis is:
A) 29°
B) 64°
C) 61°
D) 24°
E) 41°

Ans:

$A_{x}=12=x \cos \psi=25 \cos \psi$
$\cos \psi=\frac{12}{25} \Rightarrow \psi=61.3^{\circ}$
Then $90-\psi \approx 29^{\circ}$

Q11.

The vectors \mathbf{X}, \mathbf{Y}, and \mathbf{Z} are related by $\mathbf{Z}-\mathbf{Y}+\mathbf{X}=\mathbf{0}$. Which diagram in Figure $\mathbf{6}$ illustrates this relationship?

Figure 6
A) Figure 6-1
B) Figure 6-2
C) Figure 6-3
D) Figure 6-4
E) Figure 6-5

Ans:

Figure 6-1

Q12.

The result of $(\hat{j} \times \hat{k}) \times(\hat{k} \times \hat{i})$ is:
[$\hat{\mathrm{i}}, \hat{\mathrm{j}}$ and $\hat{\mathrm{k}}$ are the unit vectors in the x, y and z-direction, respectively]
A) \hat{k}
B) 0
C) \hat{i}
D) \hat{j}
E) $-\hat{\mathrm{k}}$

Ans:
$(\widehat{j} \times \widehat{k}) \times(\widehat{k} \times \widehat{i})=\widehat{i} \times \widehat{j}=\widehat{k}$

Q13.

A particle undergoes a displacement, $\Delta \overrightarrow{\mathrm{r}}=2.0 \hat{\mathrm{i}}-3.0 \hat{\mathrm{j}}+6.0 \hat{\mathrm{k}}$, ending with the position vector, $\overrightarrow{\mathrm{r}}=3.0 \hat{\mathrm{j}}-4.0 \hat{\mathrm{k}}$ in meters. What was the particle's initial position vector? $[\hat{\mathrm{i}}, \hat{\mathrm{j}}$ and $\hat{\mathrm{k}}$ are the unit vectors in the x , y and z -direction, respectively]
A) $-2.0 \hat{i}+6.0 \hat{j}-10 \hat{k}$
B) $6.0 \hat{\mathrm{j}}+10 \hat{\mathrm{k}}$
C) $2.0 \hat{i}+3.0 \hat{k}$
D) $2.0 \hat{\mathrm{k}}$
E) $-2.0 \hat{\mathrm{i}}+3.0 \hat{\mathrm{j}}-9.0 \hat{\mathrm{k}}$

Ans:

$$
\begin{aligned}
& \Delta r=\widehat{r_{f}}-\widehat{r_{i}}=\Delta \vec{r}=2.0 \widehat{i}-3.0 \widehat{j}+6.0 \widehat{k}=(3.0 \widehat{j}-4.0 \widehat{k})-\widehat{r_{i}} \\
& \widehat{r_{i}}=2.0 \widehat{i}+6.0 \widehat{j}-10 \widehat{k}
\end{aligned}
$$

Phys101	First Major-151	Zero Version
Coordinator: Prof. Dr. I. Nasser	Monday, September 14, 2015	Page: 7

Q14.

A stone is tied to a string and rotated in a circle of radius 4 m at a constant speed. If the magnitude of its acceleration is $16 \mathrm{~m} / \mathrm{s}^{2}$, what is the period of the motion?
A) $\pi \mathrm{s}$
B) $2 \pi \mathrm{~s}$
C) $3 \pi \mathrm{~s}$
D) $\pi / 2 \mathrm{~s}$
E) $4 \pi \mathrm{~s}$

Ans:

$$
\begin{aligned}
V & =\sqrt{ } R . a=\sqrt{ }(4.0 \mathrm{~m} \times 16 \mathrm{~m} / \mathrm{s} 2)=8.0 \mathrm{~m} / \mathrm{s} \\
T & =2 \pi R / v=(2 \pi \times 4.0 \mathrm{~m}) /(8.0 \mathrm{~m} / \mathrm{s})=\pi \mathrm{s}
\end{aligned}
$$

Q15.

The minimum speed of a projectile during the whole flight is $5.0 \mathrm{~m} / \mathrm{s}$. It takes 4.0 s to reach its horizontal range. What is the horizontal range of the projectile?
A) 20 m
B) 30 m
C) 40 m
D) 50 m
E) 10 m

Ans:

The minimum speed of the projectile motion is at the highest point, when $V y=$ zero.
So minimum speed $=\mathrm{Vx}$
Horizontal range $=\mathrm{V}_{\mathrm{x}} \times \mathrm{t}=5 \mathrm{~m} / \mathrm{s} \times 4 \mathrm{~s}=20 \mathrm{~m}$

