Q1.
Convert the acceleration due to gravity from $9.80 \mathrm{~m} / \mathrm{s}^{2}$ to miles/hours ${ }^{2}$. [Use the conversion factors: 1 mile $=5.28 \times 10^{3} \mathrm{ft}, 1 \mathrm{ft}=12.0 \mathrm{in}, 1 \mathrm{in}=2.54 \mathrm{~cm}, 1 \mathrm{~m}=100 \mathrm{~cm}, 1$ $\mathrm{hr}=3.60 \times 10^{3} \mathrm{~s}$]
A) 7.89×10^{4}
B) 5.28×10^{3}
C) 1.61×10^{4}
D) 4.47
E) 9.80

Q2.

Which one of the following quantities has the same dimensions as kinetic energy
$K=\frac{1}{2} m v^{2}$? [You are given: $\mathrm{m}=$ mass, $\mathrm{x}=$ distance, $\mathrm{t}=$ time, $\mathrm{v}=$ speed, $\mathrm{a}=$ acceleration.]
A) $m a x$
B) $m a t$
C) ma
D) $m v x$
E) mvt

Q3.
The position of a particle moving along the x axis is given by: $x=6.0 t^{2}-1.0 t^{3}$, where x is in meters and t is in seconds. What is the position of the particle at the instant when its acceleration is zero?
A) 16 m
B) 12 m
C) 32 m
D) 24 m
E) 20 m

Q4.
Figure 1 shows the velocity $V_{x}(\mathrm{~m} / \mathrm{s})$ of a particle moving along the x -axis. If $\mathrm{x}=2.0 \mathrm{~m}$ at $\mathrm{t}=1.0 \mathrm{~s}$, what is the position, measured in meters, of the particle at $\mathrm{t}=6.0 \mathrm{~s}$?

Figure 1
A) -1
B) -2
C) +1
D) +2
E) +6

Q5.
A jet plane lands with a speed of $100 \mathrm{~m} / \mathrm{s}$ and decelerates with $a=-5.00 \mathrm{~m} / \mathrm{s}^{2}$ as it comes to rest. From the instant it touches the runway; it moves a distance X and stops, as shown in Figure 2. What is the distance X, measured in meters?

Figure 2
A) 1000
B) 800
C) 1100
D) 100
E) 900

Q6.
An object is launched vertically upward with an initial speed V_{0}. The object has an upward velocity of $18 \mathrm{~m} / \mathrm{s}$ when it reaches one fourth of its maximum height, above its launch point. What is the value of V_{0}, in m / s ?
A) 21
B) 25
C) 30
D) 35
E) 17

Q7.
Two vectors are given by:

$$
\overrightarrow{\mathrm{A}}=2.0 \hat{\mathrm{i}}-4.0 \hat{\mathrm{j}}, \quad \text { and } \quad \overrightarrow{\mathrm{B}}=3.0 \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}} .
$$

Find the component of $\overrightarrow{\mathrm{A}}$ along the direction of $\overrightarrow{\mathrm{B}}$.
A) -2.0
B) -1.5
C) 2.5
D) 1.5
E) 3.3

Q8.
A vector \vec{B}, when added to the vector $\vec{C}=3.0 \hat{i}+4.0 \hat{j}$, yields a resultant vector that is in the positive y direction and has a magnitude equal to that of vector \vec{C}. What is the magnitude of vector \vec{B} ?
A) 3.2
B) 1.9
C) 2.4
D) 0.2
E) 0.6

Q9.
A man walks 3.00 km due East, then $7.00 \mathrm{~km} 25^{\circ}$ South of East, and then 12.0 km due South. What is the final location, in km, of the man from the starting point?
A) $9.34 \hat{i}-15.0 \hat{j}$
B) $6.21 \hat{i}-13.2 \hat{j}$
C) $-8.04 \hat{i}+11.1 \hat{j}$
D) $-15.0 \hat{i}-8.45 \hat{j}$
E) None of the other answers

Q10.

Consider two vectors, \vec{A} and \vec{B}, each has magnitude L and having an angle 60° between them. The magnitude of the product $(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}) \cdot \overrightarrow{\mathrm{A}}$ is:
A) 0
B) $3 \mathrm{~L}^{2} / 2$
C) $L^{2} / 2$
D) $3 \mathrm{~L}^{2}$
E) $3 L^{2} / 4$

Q11.
A particle is at the origin of coordinates at time $t=0$. For the time interval from 0 to 15 s , the particle's average velocity is:

$$
\overrightarrow{\mathrm{V}}_{\text {average }}=(-3.8 \hat{\mathrm{i}}+4.4 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s} .
$$

How far is the particle from the origin at $\mathrm{t}=15 \mathrm{~s}$?
A) 87 m
B) 57 m
C) 69 m
D) 15 m
E) 72 m

Q12.

A projectile is launched from ground level with an initial velocity:

$$
\overrightarrow{\mathrm{V}}_{\mathrm{o}}=(20 \hat{\mathrm{i}}+12 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s} .
$$

How far, from the launch point, will it travel horizontally as it hits the ground? Ignore air resistance.
A) 49 m
B) 51 m
C) 69 m
D) 25 m
E) 92 m

Q13.
A rifle is aimed horizontally at a target 30 m away. The bullet hits the target 1.9 cm below the aiming point, as shown in Figure 3. At what time will the bullet hit the target after being fired?

Figure 3
A) $6.2 \times 10^{-2} \mathrm{~s}$
B) $2.0 \times 10^{-2} \mathrm{~s}$
C) $3.9 \times 10^{-3} \mathrm{~s}$
D) $2.9 \times 10^{-3} \mathrm{~s}$
E) $4.2 \times 10^{-2} \mathrm{~s}$

Q14.
Figure 4 shows a 200-m wide river which has a uniform flow speed of $3.0 \mathrm{~m} / \mathrm{s}$ toward the east. A boat with a speed of $8.0 \mathrm{~m} / \mathrm{s}$ relative to the water leaves the south bank at point A and crosses the river to point B directly north of its departure point. How long does it take the boat to cross the river?

Figure 4
A) 27 s
B) 23 s
C) 25 s
D) 29 s
E) 17 s

A

Q15.
A particle is moving in uniform circular motion with speed V , period T and radius R. What is the magnitude of the average acceleration of the particle over one period?
A) 0
B) $(3 \mathrm{~V}) / \mathrm{T}$
C) $(2 \mathrm{~V}) / \mathrm{T}$
D) V / T
E) $\mathrm{V} /(2 \mathrm{~T})$

