Q1.

Convert the acceleration due to gravity from 9.80 m/s^2 to miles/hours². [Use the conversion factors: 1 mile = 5.28×10^3 ft, 1ft = 12.0 in, 1 in = 2.54 cm, 1 m = 100 cm, 1 hr = 3.60×10^3 s]

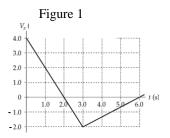
- A) 7.89×10^4
- B) 5.28×10^3
- C) 1.61×10^4
- D) 4.47
- E) 9.80

Q2.

Which one of the following quantities has the same dimensions as kinetic energy $K = \frac{1}{2}mv^2$? [You are given: m = mass, x = distance, t = time, v = speed, a = acceleration.]

- A) max
- B) mat
- C) ma
- D) m v x
- E) mvt

Q3.


The position of a particle moving along the x axis is given by: $x = 6.0 t^2 - 1.0 t^3$, where x is in meters and t is in seconds. What is the position of the particle at the instant when its acceleration is zero?

- A) 16 m
- B) 12 m
- C) 32 m
- D) 24 m
- E) 20 m

Q4.

Figure 1 shows the velocity V_x (m/s) of a particle moving along the x-axis. If x = 2.0 m at t = 1.0 s, what is the position, measured in meters, of the particle at t = 6.0 s?

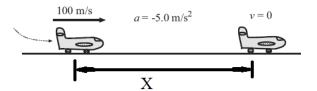
- A) -1
- B) -2
- C) +1
- D) +2
- E) +6

Phys101 First Major-142 Zero Version
Coordinator: Dr. I.M.A. Nasser Thursday, February 19, 2015 Page: 2

Q5.

A jet plane lands with a speed of 100 m/s and decelerates with $a = -5.00 \text{ m/s}^2$ as it comes to rest. From the instant it touches the runway; it moves a distance X and stops, as shown in **Figure 2**. What is the distance X, measured in meters?

Figure 2


A) 1000

B) 800

C) 1100

D) 100

E) 900

Q6.

An object is launched vertically upward with an initial speed V_0 . The object has an upward velocity of 18 m/s when it reaches one fourth of its maximum height, above its launch point. What is the value of V_0 , in m/s?

A) 21

B) 25

C) 30

D) 35

E) 17

Q7.

Two vectors are given by:

$$\vec{A} = 2.0 \hat{i} - 4.0 \hat{j}$$
, and $\vec{B} = 3.0 \hat{i} + 4.0 \hat{j}$.

Find the component of \overrightarrow{A} along the direction of \overrightarrow{B} .

A) -2.0

B) - 1.5

C) 2.5

D) 1.5

E) 3.3

Q8.

A vector \vec{B} , when added to the vector $\vec{C} = 3.0 \,\hat{i} + 4.0 \,\hat{j}$, yields a resultant vector that is in the positive y direction and has a magnitude equal to that of vector \vec{C} . What is the magnitude of vector \vec{B} ?

A) 3.2

B) 1.9

C) 2.4

D) 0.2

E) 0.6

09.

A man walks 3.00 km due East, then 7.00 km 25° South of East, and then 12.0 km due South. What is the final location, in km, of the man from the starting point?

- A) $9.34\hat{i} 15.0\hat{j}$
- B) $6.21\hat{i} 13.2\hat{j}$
- C) $-8.04 \hat{i} + 11.1 \hat{j}$
- D) $-15.0\,\hat{i} 8.45\,\hat{j}$
- E) None of the other answers

Q10.

Consider two vectors, \overrightarrow{A} and \overrightarrow{B} , each has magnitude L and having an angle 60° between them. The magnitude of the product $(\overrightarrow{A} \times \overrightarrow{B}) \cdot \overrightarrow{A}$ is:

- A) 0
- B) $3L^2/2$
- C) $L^2/2$
- $D) 3L^2$
- E) $3L^{2}/4$

Q11.

A particle is at the origin of coordinates at time t = 0. For the time interval from 0 to 15 s, the particle's average velocity is:

$$\overrightarrow{V}_{average} = \left(-3.8\ \hat{i} + 4.4\ \hat{j}\right)\ m/s.$$

How far is the particle from the origin at t = 15 s?

- A) 87 m
- B) 57 m
- C) 69 m
- D) 15 m
- E) 72 m

Q12.

A projectile is launched from ground level with an initial velocity:

$$\vec{\mathbf{V}}_{o} = \left(20\,\hat{\mathbf{i}} + 12\,\hat{\mathbf{j}}\right)\,\mathrm{m/s}.$$

How far, from the launch point, will it travel horizontally as it hits the ground? Ignore air resistance.

- A) 49 m
- B) 51 m
- C) 69 m
- D) 25 m
- E) 92 m

Q13.

A rifle is aimed horizontally at a target 30 m away. The bullet hits the target 1.9 cm below the aiming point, as shown in **Figure 3**. At what time will the bullet hit the target after being fired?

A) 6.2×10^{-2} s

- B) 2.0×10^{-2} s
- C) 3.9×10^{-3} s
- D) 2.9×10^{-3} s
- E) 4.2×10^{-2} s

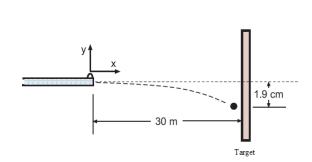
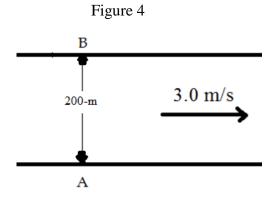



Figure 3

Q14.

Figure 4 shows a 200-m wide river which has a uniform flow speed of 3.0 m/s toward the east. A boat with a speed of 8.0 m/s relative to the water leaves the south bank at point A and crosses the river to point B directly north of its departure point. How long does it take the boat to cross the river?

- A) 27 s
- B) 23 s
- C) 25 s
- D) 29 s
- E) 17 s

Q15.

A particle is moving in uniform circular motion with speed V, period T and radius R. What is the magnitude of the average acceleration of the particle over one period?

- A) 0
- B) (3V)/T
- C) (2V)/T
- D) V/T
- E) V/(2T)