Phys101	First Major-182	Zero Version
Coordinator: Dr. S. Kunwar	Thursday, February 14, 2019	Page: 1

Q1.

A position of a particle at time t is given by: $x = ab(1 - e^{-bt})$. The dimensions of a and b are, respectively:

A) LT and T^{-1} B) LT⁻¹ and L C) LT⁻¹ and LT⁻¹ D) T⁻¹ and LT⁻¹ E) MT⁻¹ and LT⁻¹

Q2.

A uniform solid cylinder with a radius of 2.30 cm and a height of 55.0 inches has a mass of 690 g. Find its density. (1 inch = 2.54 cm)

A) 297 kg/m³
B) 230 kg/m³
C) 145 kg/m³
D) 400 kg/m³
E) 520 kg/m³

Q3.

A car starts from rest at time t = 0; accelerates at a constant rate of 4.0 m/s² in a straight road and reaches a speed of 20 m/s. Then the car slows down at a constant rate until it stops at t = 9.0 s. Find the total distance travelled by the car for the entire motion.

A) 90 m

B) 50 m

C) 60 m

D) 40 m

E) 80 m

Q4.

The coordinate of an object is given as a function of time by $x = 7t - 4t^2$, where x is in meters and t is in seconds. The ratio of its instantaneous velocity at t = 2 s to its average velocity over the interval from t = 0 to t = 2 s is:

A) 9

B) 6

C) 1

D) 4

E) 5

Phys101	First Major-182	Zero Version
Coordinator: Dr. S. Kunwar	Thursday, February 14, 2019	Page: 2

Q5.

The graph in **Figure 1** represents the straight-line motion of a car. Find the acceleration of the car at 7.1 s.

Q6.

The speed of a freely falling particle under the gravity is increasing with time. Its velocity and acceleration are:

- A) negative and negative, respectively
- B) negative and positive, respectively
- C) positive and negative, respectively
- D) negative and zero, respectively
- E) positive and zero, respectively

Q7.

Vector \vec{A} is in the direction 34.0° clockwise from the negative y-axis. The magnitude of x-component of \vec{A} is 16.0 m. What is the magnitude of \vec{A} ?

A) 28.6 m

B) 11.3 m

- C) 15.4 m
- D) 23.8 m
- E) 32.5 m

Q8.

Starting from one oasis, a camel walks 25 km in a direction 30° south of west and then walks 30 km toward the north to a second oasis. What is the direction from the first oasis to the second oasis?

A) 51° West of NorthB) 33° North of West

- C) 27° West of North
- D) 12° North of West
- E) 45° West of North

Phys101	First Major-182	Zero Version
Coordinator: Dr. S. Kunwar	Thursday, February 14, 2019	Page: 3

Q9.

If the vector $\vec{A} = 2.0\hat{i} + 3.0\hat{j}$, vector $\vec{B} = 4.0\hat{j} + 3.0\hat{k}$ and vector $\vec{C} = 5.0\hat{i} - 5.0\hat{k}$, find the value of $(\vec{A} \times \vec{B}) \cdot \vec{C}$.

A) 5

B) 4C) 2

D) 1

E) 7

Q10.

Vectors \vec{A} and \vec{B} each have magnitude 10 units. If the magnitude of $(\vec{A} \cdot \vec{B})$ is 50 units. Find the magnitude of $(\vec{A} \times \vec{B})$.

A) 87B) 55

C) 26

D) 43

E) 38

Q11.

A plane traveling east at 200 m/s turns and then travels south at 200 m/s. The magnitude of change in its velocity is:

A) 283 m/s

B) 200 m/s

- C) 156 m/s
- D) 400 m/s

E) zero

Q12.

An object is moving on circle in xy-plane with a uniform speed of 8.0 m/s. At time t = 0 its acceleration is $-32 \text{ m/s}^2 \hat{i}$. If at around t = 1.2 s (approximate time) its acceleration is $-32 \text{ m/s}^2 \hat{j}$, which one of the following statements is **TRUE**?

A) The object is going around clockwise direction.

B) The object is going around counter-clockwise direction.

C) The velocity and acceleration of the object are along the same direction.

- D) The velocity and position vector of the object are along the same direction.
- E) The position vector and acceleration are perpendicular to each other.

Phys101	First Major-182	Zero Version
Coordinator: Dr. S. Kunwar	Thursday, February 14, 2019	Page: 4

Q13.

A projectile is fired from the leveled ground at an angle of 30.0° above the horizontal with the initial speed of 196 m/s. Find the speed of the projectile when it reaches half of its maximum height. (Ignore air resistance)

- A) 183 m/s
- B) 155 m/s
- C) 109 m/s
- D) 132 m/s
- E) 267 m/s

Q14.

A 0.20-km wide river has a uniform flow speed of 3.0 m/s toward the east. A boat with a speed of 8.0 m/s relative to the water leaves the south bank and heads in such a way that it crosses to a point directly north of its departure point. How long does it take the boat to cross the river?

- A) 27 s
- B) 30 s
- C) 45 s
- D) 60 s E) 70 s
- E) /0 S

Q15.

A 70 N block and a 35 N block are connected by a massless string as shown in **Figure 2**. If the pulley is massless-frictionless and the surface is frictionless, the magnitude of the acceleration of the 35-N block is

Phys101	First Major-182	Zero Version
Coordinator: Dr. S. Kunwar	Thursday, February 14, 2019	Page: 5

Q16.

A block is pushed up a frictionless 30° incline by an applied force \vec{F} , which is parallel to the horizontal as shown in **Figure 3**. If the magnitude of \vec{F} is 25 N and M = 3.0 kg, what is the magnitude of the resulting acceleration of the block?

A) 2.3 m/s²
B) 3.5 m/s²
C) 6.4 m/s²
D) 4.8 m/s²
E) 5.2 m/s²

Q17.

Three blocks (A, B, C), each having the same mass M, are connected by strings as shown in **Figure 4**. Block C is pulled to the right by a force \vec{F} that causes the entire system to accelerate. Neglecting friction, the net force acting on block B is:

Q18.

A 0.10 kg stone is tied to the end of a 1.0-m long rope. The stone is moved in a circle in the vertical plane with a constant speed. Which one of the following statements is **TRUE**?

- A) The magnitude of the tension at the highest point is minimum
- B) The magnitude of tension at the lowest point is minimum
- C) The magnitude of the tension at the highest point is maximum
- D) The magnitude of tension at the lowest point is zero
- E) The magnitude of tension is same everywhere

Phys101	First Major-182	Zero Version
Coordinator: Dr. S. Kunwar	Thursday, February 14, 2019	Page: 6

Q19.

A 2.5 kg block is initially at rest on a horizontal surface. A horizontal force \vec{F} of magnitude 6.0 N and a vertical force \vec{P} are then applied to the block as shown in **Figure 5**. The coefficients of friction for the block and surface are $\mu_s = 0.40$ and $\mu_k = 0.25$. Determine the magnitude of the frictional force acting on the block if the magnitude of \vec{P} is 8.0 N

B) 6.6 N

C) 4.1 N

D) 8.0 N

E) 9.8 N

Q20.

At what angle should the circular roadway of 50 m radius, be banked to allow cars to round the curve without slipping at 12 m/s? (Ignore friction)

A) 16°

B) 10°

C) 33°

D) 27°

E) 90°