| Phys101                        | First Major-173       | Zero Version |
|--------------------------------|-----------------------|--------------|
| Coordinator: Dr. M. Al-Kuhaili | Sunday, July 15, 2018 | Page: 1      |

Q1.

The speed of an object is given by:  $v = \sqrt{\frac{B}{\rho}}$ , where  $\rho$  is the density of the object, and *B* is a constant.

What are the dimensions of B?

A)  $ML^{-1}T^{-2}$ B)  $ML^{-2}T^{-1}$ C)  $M^{-1}L^{-1}T^{-2}$ D)  $M^{-1}L^{-2}T^{-1}$ E)  $TM^{2}$ 

# Q2.

A car is driving at 70 miles/hour. Express this speed in (m/s). (1 mile = 5280 ft, and 1m = 3.3 ft)

A) 31

B) 47

C) 14

- D) 28
- E) 56

### Q3.

The position of an object moving along a straight line is given by the equation:  $x = 4.0t + t^2$ , where x is in meters and t is in seconds. What is the average velocity of the object in the time interval from t = 2.0 s to t = 5.0 s?

- A) 11 m/s
- B) 44 m/s
- C) 17 m/s
- D) 94 m/s
- E) 23 m/s

## Q4.

Points A and B are separated by 1200 m. A particle starts from rest at point A and accelerates at + 1.20  $m/s^2$  through the first half of the distance, and decelerates at – 1.20  $m/s^2$  through the second half until it stops at B. What is the total travel time?

- A) 63.2 s
- B) 13.6 s
- C) 510 s
- D) 99.4 s
- E) 17.9 s

| Phys101                        | First Major-173       | Zero Version |
|--------------------------------|-----------------------|--------------|
| Coordinator: Dr. M. Al-Kuhaili | Sunday, July 15, 2018 | Page: 2      |

```
Q5.
```

A particle moves along the x axis with the velocity v(t) that is shown in **Figure 1**. Find the acceleration of the particle at t = 2.0 s.



E) zero

Q6.

Two objects (A and B) are thrown vertically upward from the ground with velocities  $v_A = 100 \text{ m/s}$ and  $v_B = 10 \text{ m/s}$ . The maximum heights reached by A and B are  $h_A$  and  $h_B$ , respectively. The ratio  $h_A / h_B$  is:

- A) 100
- B) 10
- C) 1000
- D) 1/10
- E) 1/100

Q7.

A car travels at 40 km/h for 2.0 h, then at 50 km/h for 1.0 h, and finally at 20 km/h for 0.50 h. What is the average speed of the car for the whole trip?

- A) 40 km/h
- B) 37 km/h
- C) 55 km/h
- D) 45 km/h
- E) 32 km/h

| Phys101                        | First Major-173       | Zero Version |
|--------------------------------|-----------------------|--------------|
| Coordinator: Dr. M. Al-Kuhaili | Sunday, July 15, 2018 | Page: 3      |

Q8.

Vectors  $\vec{a}$  ,  $\vec{b}$  and  $\vec{c}$  are shown in Figure 2. Vector  $\vec{c}$  is equal to



Q9.

Two vectors are given by:  $\vec{A} = -3.0\hat{i} + 4.0\hat{j}$  and  $\vec{B} = 4.0\hat{j} + 3.0\hat{k}$ . What is the angle between  $\vec{A}$  and  $\vec{B}$ ?

A) 50°

B) 68°

C) 39°

D) 90°

E) zero

| Phys101                        | First Major-173       | Zero Version |
|--------------------------------|-----------------------|--------------|
| Coordinator: Dr. M. Al-Kuhaili | Sunday, July 15, 2018 | Page: 4      |

Q10.

Two vectors  $\vec{a}$  and  $\vec{b}$  have equal magnitudes of 10 units, and are oriented as shown in **Figure 3**. Their vector sum is  $\vec{r}$ . What are the magnitude of  $\vec{r}$  and the angle  $\vartheta$  it makes with the + *x* axis?



A) r = 10 units,  $\theta = 90^{\circ}$ B) r = 20 units,  $\theta = 150^{\circ}$ C) r = 33 units,  $\theta = 60^{\circ}$ D) r = 20 units,  $\theta = 30^{\circ}$ E) r = 13 units,  $\theta = 80^{\circ}$ 

## Q11.

At time t = 0, a particle leaves the origin with a velocity of 6.0 m/s in the positive y-direction and moves in the xy plane with a constant acceleration of  $(2.0\hat{i} - 3.0\hat{j}) \text{ m/s}^2$ . At the instant the particle reaches its maximum y coordinate, find its velocity.

- A) 4.0 m/s in the + x direction
- B) 6.0 m/s in the + x direction
- C) 8.0 m/s in the + x direction
- D) 12 m/s in the + y direction
- E) zero

| Phys101                        | First Major-173       | Zero Version |
|--------------------------------|-----------------------|--------------|
| Coordinator: Dr. M. Al-Kuhaili | Sunday, July 15, 2018 | Page: 5      |

#### Q12.

A ball is thrown from the top of a building with an initial velocity of 8.00 m/s making an angle of  $20.0^{\circ}$  below the horizontal, as shown in **Figure 4**. It strikes the ground 3.00 s later. Find the height from which the ball was thrown.



A) 52.3 mB) 26.5 mC) 72.2 m

D) 9.80 m

E) 35.0 m

## Q13.

A stone is tied to the end of a string and is rotated with constant speed in a horizontal circle of radius 1.52 m. It makes two complete revolutions each second. What is the magnitude of its acceleration?

A) 240 m/s<sup>2</sup>

B) 0.240 m/s<sup>2</sup>

C) 24.0 m/s<sup>2</sup>

D) 2.40 m/s<sup>2</sup>

E) 2400 m/s<sup>2</sup>

Q14.

A car travels due east with a speed of 10.0 m/s. Rain is falling vertically relative to the earth with a speed of 5.00 m/s. At what angle from the vertical direction does the rain appear to be falling as observed by the driver of the car?

A) 63.4°

B) 26.6°

- C) 24.1°
- D) 41.8°
- E) 85.2°

c-20-n-20-s-0-e-0-fg-1-fo-1

| Phys101                        | First Major-173       | Zero Version |
|--------------------------------|-----------------------|--------------|
| Coordinator: Dr. M. Al-Kuhaili | Sunday, July 15, 2018 | Page: 6      |

## Q15.

A 2.0 kg block sides down a frictionless 15° inclined plane. A force ( $\vec{F}$ ) acting parallel to the incline is applied to the block (see **Figure 5**). If the acceleration of the block is 1.5 m/s<sup>2</sup> down the incline, what is the magnitude of  $\vec{F}$ ?



#### Q16.

A 1.5 kg object has a velocity of  $5.0\hat{j}$  (m/s) at time t = 0. It is accelerated at a constant rate for 5.0 s, after which it has a velocity of  $6.0\hat{i}+12\hat{j}$  (m/s). What is the magnitude of the net force acting on the object during this time interval?

A) 2.8 N

- B) 3.9 N
- C) 4.3 N
- D) 1.1 N
- E) 9.8 N

Q17.

A certain force when applied to mass  $m_1$  gives an acceleration of 12.0 m/s<sup>2</sup>, and when applied to mass  $m_2$  gives an acceleration of 3.30 m/s<sup>2</sup>. What acceleration would the same force give when applied to an object of mass  $m_{1+}m_2$ ?

- A) 2.59 m/s<sup>2</sup>
- B) 6.00 m/s<sup>2</sup>
- C) 7.65 m/s<sup>2</sup>
- D) 8.70 m/s<sup>2</sup>
- E) 15.3 m/s<sup>2</sup>

| Phys101                        | First Major-173       | Zero Version |
|--------------------------------|-----------------------|--------------|
| Coordinator: Dr. M. Al-Kuhaili | Sunday, July 15, 2018 | Page: 7      |

#### Q18.

Three blocks (A, B, and C) rest on a table, as shown in **Figure 6**. The weight of each block is indicated on the figure. The force of block C on block B has a magnitude of



## Q19.

Block A, with a mass of 50 kg, rests on a horizontal surface. The coefficient of kinetic friction between the block and the surface is 0.40. A massless string connects block A through a massless frictionless pulley to another block B of mass 30 kg, as shown in **Figure 7**. What is the magnitude of the acceleration of block B?



| Phys101                        | First Major-173       | Zero Version |
|--------------------------------|-----------------------|--------------|
| Coordinator: Dr. M. Al-Kuhaili | Sunday, July 15, 2018 | Page: 8      |

# Q20.

The driver of a 1000-kg car tries to turn through a circle of radius 100 m on a flat circular road at a speed of 10 m/s. The frictional force between the tires and the road is 900 N pointing to the center of the circular road. The car will

- A) slide off to the outside of the circular road.
- B) slide into the inside of the circular road.
- C) make the turn only if it goes faster.
- D) make the turn without slipping.
- E) None of the other answers.