Phys101	First Major-172	Zero Version
Coordinator: Dr. S. Kunwar	Monday, March 05, 2018	Page: 1

Q1.
Work is defined as the scalar product of force and displacement. Power is defined as the rate of change of work with time. The dimension of power is:
A) $\mathrm{ML}^{2} \mathrm{~T}^{-3}$
B) $\mathrm{M}^{2} \mathrm{~L}^{2} \mathrm{~T}^{3}$
C) $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
D) $\mathrm{M}^{2} \mathrm{~L}^{2} \mathrm{~T}^{2}$
E) $\mathrm{ML}^{-1} \mathrm{~T}^{-1}$

Q2.
A bullet is fired through a wooden board, 5.52 inches thick, with its line of motion perpendicular to the face of the board. If it enters with a speed of $450 \mathrm{~m} / \mathrm{s}$ and emerges with a speed of $220 \mathrm{~m} / \mathrm{s}$, what is the bullet's acceleration as it passes through the board? (Assume the acceleration is constant and take 1 inch $=2.54 \mathrm{~cm}$.)
A) $-550 \mathrm{~km} / \mathrm{s}^{2}$
B) $+360 \mathrm{~km} / \mathrm{s}^{2}$
C) $-360 \mathrm{~km} / \mathrm{s}^{2}$
D) $+550 \mathrm{~km} / \mathrm{s}^{2}$
E) $+275 \mathrm{~km} / \mathrm{s}^{2}$

Q3.
A person pushes a cart along a straight track. The velocity of the cart changes over time as shown in Figure 1. What is the average acceleration of the cart between $t=2 \mathrm{~s}$ and $\mathrm{t}=7 \mathrm{~s}$?

A) $-2.0 \mathrm{~m} / \mathrm{s}^{2}$
B) $-3.5 \mathrm{~m} / \mathrm{s}^{2}$
C) $+2.0 \mathrm{~m} / \mathrm{s}^{2}$
D) $+3.5 \mathrm{~m} / \mathrm{s}^{2}$
E) zero

Phys101	First Major-172	Zero Version
Coordinator: Dr. S. Kunwar	Monday, March 05, 2018	Page: 2

Q4.
A rock is dropped vertically down from rest from the top of a $100-\mathrm{m}$ high building. At what time and with what speed will the rock reach 50.0 m below the top of the building? (Ignore air resistance)
A) $3.18 \mathrm{~s}, 31.3 \mathrm{~m} / \mathrm{s}$
B) $1.50 \mathrm{~s}, 19.8 \mathrm{~m} / \mathrm{s}$
C) $4.36 \mathrm{~s}, 24.5 \mathrm{~m} / \mathrm{s}$
D) $3.18 \mathrm{~s}, 11.6 \mathrm{~m} / \mathrm{s}$
E) $9.80 \mathrm{~s}, 59.1 \mathrm{~m} / \mathrm{s}$

Q5.
The position of a particle moving along the x axis is given by: $x=2.0+6.0 t^{2}-2.0 t^{3}$ (in SI units). Find the magnitude of the acceleration at the instant when the particle reaches the maximum position along the positive x -axis.
A) $12 \mathrm{~m} / \mathrm{s}^{2}$
B) $6.0 \mathrm{~m} / \mathrm{s}^{2}$
C) $24 \mathrm{~m} / \mathrm{s}^{2}$
D) $18 \mathrm{~m} / \mathrm{s}^{2}$
E) zero

Q6.
A vector $\stackrel{1}{\boldsymbol{F}}$ is given as $\stackrel{1}{\boldsymbol{F}}=q(\underset{\boldsymbol{v}}{\mathrm{~V}} \times \stackrel{1}{\boldsymbol{B}})$, where $\stackrel{\mathcal{V}}{\boldsymbol{v}}$ is perpendicular to $\stackrel{1}{\boldsymbol{B}}$. In which of the situations, shown in Figure 2, is the direction of $\stackrel{\text { B }}{\boldsymbol{B}}$ in the positive z-axis if q is a positive constant

(1)

(2)

(3)
A) 2 and 3 only
B) 1 only
C) 2 only
D) 3 only
E) 1 and 3 only

Phys101	First Major-172	Zero Version
Coordinator: Dr. S. Kunwar	Monday, March 05, 2018	Page: 3

Q7.
The three vectors in Figure 3 have magnitudes $a=3.00 \mathrm{~m}, b=4.00 \mathrm{~m}$, and $c=10.0$ m and angle $\theta=30.0^{\circ}$. If $\overrightarrow{\boldsymbol{c}}=p \stackrel{1}{\boldsymbol{a}}+q \stackrel{1}{\boldsymbol{b}}$, what are the values of p and q, respectively?

A) -6.66 and 4.33
B) -5.00 and 8.66
C) 3.00 and -5.00
D) -2.44 and -3.55
E) 12.5 and 9.86

Q8.
Starting from origin O, a camel walks 25 km south of west $\left(\stackrel{I}{d}_{\mathbf{d}}\right)$ and reaches to point A as shown in Figure 4. Then it walks 30 km directly up to the north $\left(\boldsymbol{1}_{\mathbf{d}}^{2}\right)$ and reaches to point B. If point B is 28 km away from the origin, find the angle (θ) between $\stackrel{1}{\boldsymbol{d}}_{1}$ and $\stackrel{1}{\boldsymbol{d}}{ }_{2}$.

A) 120°
B) 150°
C) 105°

Phys101	First Major-172	Zero Version
Coordinator: Dr. S. Kunwar	Monday, March 05, 2018	Page: 4

D) 130°
E) 159°

Q9.
A particle moves in the $x y$ plane, starting from the origin at $t=0$ with an initial velocity $\stackrel{\mathrm{r}}{\boldsymbol{v}}_{0}=20.0 \hat{\mathbf{i}}-3.00 \hat{\boldsymbol{j}}$, where the unit of velocity is m / s. The particle experiences an acceleration in the x direction only that is given by $a_{x}=-4.00 \mathrm{~m} / \mathrm{s}^{2}$. Find the magnitude of its average velocity from $t=0$ to $t=5.00 \mathrm{~s}$.
A) $10.4 \mathrm{~m} / \mathrm{s}$
B) $15.7 \mathrm{~m} / \mathrm{s}$
C) $22.5 \mathrm{~m} / \mathrm{s}$
D) $35.1 \mathrm{~m} / \mathrm{s}$
E) $46.3 \mathrm{~m} / \mathrm{s}$

Q10.
The pilot of an aircraft flies due north relative to the ground in a wind blowing at $40 \mathrm{~km} / \mathrm{h}$ toward the east. If his speed relative to the ground is $80 \mathrm{~km} / \mathrm{h}$, what is the velocity of his airplane relative to the air? (Considering $\hat{\boldsymbol{i}}=$ East and $\hat{\boldsymbol{j}}=$ North)
A) $-40 \hat{\mathbf{i}}+80 \hat{\boldsymbol{j}}(\mathrm{~km} / \mathrm{h})$
B) $-40 \hat{\mathbf{i}}-80 \hat{\boldsymbol{j}}(\mathrm{~km} / \mathrm{h})$
C) $40 \hat{\mathbf{i}}+80 \hat{\boldsymbol{j}}(\mathrm{~km} / \mathrm{h})$
D) $40 \hat{\mathbf{i}}-80 \hat{\boldsymbol{j}}(\mathrm{~km} / \mathrm{h})$
E) $40 \hat{\mathbf{i}}+40 \hat{\boldsymbol{j}}(\mathrm{~km} / \mathrm{h})$

Q11.
An Earth satellite moves in a circular orbit of radius 7010 km with a period of 98 min . What is the magnitude of the centripetal acceleration of the satellite?
A) $8.0 \mathrm{~m} / \mathrm{s}^{2}$
B) $5.0 \mathrm{~m} / \mathrm{s}^{2}$
C) $3.0 \mathrm{~m} / \mathrm{s}^{2}$
D) $2.0 \mathrm{~m} / \mathrm{s}^{2}$
E) $4.0 \mathrm{~m} / \mathrm{s}^{2}$

Q12.
A stone is thrown from the top of a building at an angle of 30° above the horizontal with an initial speed of $20 \mathrm{~m} / \mathrm{s}$. The height from which the stone is thrown is 45 m above the ground. What is the final speed of the stone just before it hits the ground? (Ignore air resistance)

[^0]A) $36 \mathrm{~m} / \mathrm{s}$
B) $20 \mathrm{~m} / \mathrm{s}$
C) $15 \mathrm{~m} / \mathrm{s}$
D) $43 \mathrm{~m} / \mathrm{s}$
E) $54 \mathrm{~m} / \mathrm{s}$

Q13.
Two blocks of masses 2.0 kg and 3.0 kg move on a horizontal frictionless surface and are subjected to two horizontal forces of magnitudes 25 N and 5.0 N , respectively, as shown in Figure 5. What is the magnitude of the force exerted by block 2 on block 1?

A) 17 N
B) 21 N
C) 29 N
D) 37 N
E) 11 N

Q14.
A block is projected up a frictionless inclined plane with initial speed $v_{o}=3.50 \mathrm{~m} / \mathrm{s}$. The angle of the inclined plane is $\theta=32.0^{\circ}$. How far up the plane does the block go?
A) 1.18 m
B) 2.91 m
C) 5.27 m
D) 6.34 m
E) 3.75 m

Q15.

Using a rope that will break completely if the tension in it exceeds 600 N , you need to lift vertically a block weighing 449 N from the ground. What magnitude of acceleration will put the rope on the verge of breaking?
A) $3.3 \mathrm{~m} / \mathrm{s}^{2}$
B) $1.4 \mathrm{~m} / \mathrm{s}^{2}$
C) $7.5 \mathrm{~m} / \mathrm{s}^{2}$
D) $4.6 \mathrm{~m} / \mathrm{s}^{2}$
E) $9.1 \mathrm{~m} / \mathrm{s}^{2}$

Q16.
A block slides on a frictionless horizontal surface under the action of two forces, as shown in Figure 6. If $\boldsymbol{F}=20 \mathrm{~N}$ and $M=5.0 \mathrm{~kg}$, find the magnitudes of the resulting acceleration of the block and the normal force on the block, respectively.

A) $7.5 \mathrm{~m} / \mathrm{s}^{2}$ and 59 N
B) $7.5 \mathrm{~m} / \mathrm{s}^{2}$ and 84 N
C) $4.5 \mathrm{~m} / \mathrm{s}^{2}$ and 47 N
D) $4.5 \mathrm{~m} / \mathrm{s}^{2}$ and 59 N
E) $3.0 \mathrm{~m} / \mathrm{s}^{2}$ and 84 N

Q17.

A massless rope passes over a massless and frictionless pulley suspended from the ceiling as shown in Figure 7. A block of mass $m_{1}=4 \mathrm{~kg}$ is attached to one end, and another block of mass $m_{2}=5 \mathrm{~kg}$ is attached to the other end. The acceleration of the $5-\mathrm{kg}$ block is:

A) $g / 9$
B) $5 g / 9$
C) $4 g / 9$
D) $g / 5$
E) $g / 4$

Q18.
A crate rests on a rough horizontal surface and a person pulls on it with a $10-\mathrm{N}$ force. No matter what the orientation of the force, the crate does not move. Rank the situations shown in Figure 8 according to the magnitude of the frictional force of the surface on the crate, least to greatest.

A) $3,2,1$
B) $1,2,3$
C) $2,1,3$
D) $3,1,2$
E) All tie

Q19.
A coin placed 30.0 cm from the center of a rotating horizontal turntable slips when its speed reaches $50.0 \mathrm{~cm} / \mathrm{s}$. What is the coefficient of static friction between the coin and the turntable?
A) 0.085
B) 0.027
C) 0.045
D) 0.064
E) 0.019

Q20.

In Figure 9, block 1 of mass $m_{1}=2.0 \mathrm{~kg}$ and block 2 of mass $m_{2}=1.0 \mathrm{~kg}$ are connected by a string of negligible mass. Block 2 is pushed by a force of magnitude 20 N making an angle $\theta=35^{\circ}$ as shown. The coefficient of kinetic friction between each block and the horizontal surface is 0.20 . What is the tension in the string?

A) 9.4 N
B) 6.2 N
C) 2.5 N
D) 7.1 N
E) 4.7 N

[^0]: King Fahd University of Petroleum and Minerals
 Physics Department c-20-n-20-s-0-e-0-fg-1-fo-1

