Phys101	First Major	Code: 2
Term: 132	Sunday, February 16, 2014	Page: 1

Q1.

A hectare is a unit of area that is equal to $1.0 \times 10^4 \text{ m}^2$. If water of volume 0.020 km³ covers 30 hectares of flat land, find the depth of the water.

- A) 67 m
 B) 26 m
 C) 45 m
- C) 45 m
- D) 30 m E) 87 m

Q2.

Consider the following equation: $x = A_t^2 + \frac{B}{(v + \alpha)}t$, where x is the distance, t is the time and v is the speed. Find the dimensions of B:

 $\begin{array}{c|c} A) & L^2 T^{-2} \\ B) & L^2 T \\ C) & L & T^{-1} \\ D) & L & T^2 \\ E) & L \end{array}$

Q3.

Figure 1 gives the acceleration of a particle as a function of time. In which of the time intervals indicated does the particle move with constant speed?

Q4.

At time t = 0, a particle had a speed of 20 m/s in the positive x direction. At time t = 2.5 s, its speed was 40 m/s in the opposite direction. Find the average acceleration of the particle during the 2.5 s interval.

A) -24 m/s^2 B) $+18 \text{ m/s}^2$ C) -8.0 m/s^2 D) $+20 \text{ m/s}^2$ E) -30 m/s^2

Phys101	First Major	Code: 2
Term: 132	Sunday, February 16, 2014	Page: 2

Q5.

A car travels in a straight line. First, it starts from rest at point A and accelerates at a rate of 5.00 m/s^2 until it reaches a speed of 100 m/s at point B. The car then slows down at a constant rate of 8.00 m/s^2 until it stops at point C. Find the time the car takes for this trip (from point A to point C).

A) 32.5 s
B) 25.0 s
C) 10.5 s
D) 15.0 s
E) 45.0 s

Q6.

A parachutist jumps from an airplane at an altitude of 5.0×10^3 m. He falls with an acceleration g = 9.8 m/s² for the first 10 s. Then he opens his parachute and falls with a net vertical upward acceleration of 50 m/s² until his downward speed reaches 20 m/s. How far does he fall vertically downward when his net upward acceleration was 50 m/s²?

A) 92 m
B) 50 m
C) 75 m
D) 67 m
E) 45 m

Q7.

Two vectors are given by $\vec{A} = 2.00\hat{i} + 2.00\hat{j}$ and $\vec{B} = -2.00\hat{i} + 4.00\hat{j}$, find the angle

between \vec{A} and \vec{B} .

A) 71.6°
B) 45.0°
C) 56.1°
D) 18.4°
E) 24.5°

Phys101	First Major	Code: 2
Term: 132	Sunday, February 16, 2014	Page: 3

Q8.

The two vectors shown in **Figure 2** lie in an *xy* plane. What are the signs of the *x* and *y* components, respectively, of the vector $\begin{array}{c} y \\ (\overrightarrow{d_2} - \overrightarrow{d_1}) \end{array}$

Q9.

For the following three vectors, find $\vec{C} \cdot (2\vec{A} \times \vec{B})$

 $\vec{A} = 2.00\hat{i} + 3.00\hat{j}$ $\vec{B} = -3.00\hat{i} + 4.00\hat{j}$ $\vec{C} = 7.00\hat{i} + 3.00\hat{k}$ (A) 102(B) -14.0(C) 0(D) 56.0(E) 78.0

Q10.

A man makes three successive displacements; 3.50 m south, 8.20 m northeast, and 15.0 m west, respectively. Find the resultant displacement (both the magnitude and direction relative to the east and measured counter-clock wise).

A) 9.48 m, 166° B) 9.48 m, 45.0°

- D) 9.46 III, 43.0
- C) 9.48 m, 225°
- D) 5.80 m, 45.0°
- E) 5.80 m, 225°

Phys101	First Major	Code: 2
Term: 132	Sunday, February 16, 2014	Page: 4

Q11.

A ship sails due north at 4.50 m/s relative to the ground while a boat heads northwest with a speed of 5.20 m/s relative to the ground. Find the speed of the ship relative to the boat.

A)	3.77	<u>m/s</u>

- B) 2.39 m/s
- C) 7.95 m/s
- D) 1.25 m/sE) 6.11 m/s

Q12.

A student throws a red ball from the balcony of a tall building with an initial horizontal speed of 10 m/s. At the same time, a second student drops a blue ball from the same balcony. Neglecting air resistance, which statement is true?

A) The two balls reach the ground at the same instant.

- B) The blue ball reaches the ground first.
- C) The red ball reaches the ground first.
- D) Both balls hit the ground with the same speed.
- E) The blue ball hits the ground with larger speed.

Q13.

A stone is tied to the end of a string and is rotated in a horizontal circle at 400 revolutions per minute. If the magnitude of its acceleration is 1.5×10^3 m/s², what is the radius of the circle?

- <mark>A) 0.85 m</mark>
- B) 0.35 m
- C) 0.64 m $\,$
- D) 0.71 m
- E) 0.53 m

Q14.

A ball is thrown straight upward and returns to the thrower's hand (at the same initial level) after 3.00 s. A second ball thrown from the same height at an angle of 37.0° with the horizontal reaches the same maximum height as the first ball. With what speed was the second ball thrown?

- A) 24.4 m/s
- B) 14.7 m/s
- C) 29.1 m/s
- D) 49.3 m/s
- E) 35.2 m/s

Phys101	First Major	Code: 2
Term: 132	Sunday, February 16, 2014	Page: 5

Q15.

A particle starts from the origin of an xy plane. Its acceleration is given by $\vec{a} = (2.0\hat{i} + 4.0\hat{j}) \text{ m/s}^2$. At time t = 0, the velocity is $-4.0\hat{i}$ m/s. What is the particle's velocity if the y-component of its displacement is +18 m?

- **A)** $(2.0\hat{i} + 12\hat{j})$ **m/s**
- B) $(4.0\hat{i} 6.0\hat{j})$ m/s
- C) $(2.0\hat{i} + 2.0\hat{j})$ m/s
- D) $(3.0\hat{i} + 12\hat{j})$ m/s
- E) $(4.0\hat{i} 4.0\hat{j})$ m/s