Phys101	First Major-131	Zero Version
Coordinator: Dr. A. A. Naqvi	Wednesday, September 25, 2013	Page: 1

Q1.

Consider two uniform solid spheres A and B made of the same material and having radii r_{A} and r_{B}, respectively. Find the ratio r_{B} / r_{A} if the mass of sphere B is five times the mass of sphere A.
A) 1.7
B) 2.2
C) 2.7
D) 1.2
E) 3.3

Q2.
The position x of a particle is given by
$x=R t^{3}+\frac{H}{R} t^{2}$
where x is in meters and t is in seconds. The dimension of H is
A) $\mathrm{L}^{2} \mathrm{~T}^{-5}$
B) $\mathrm{L}^{3} \mathrm{~T}^{-2}$
C) $\mathrm{L} \mathrm{T}^{-2}$
D) $\mathrm{ML}^{-3} \mathrm{~T}^{-2}$
E) $\mathrm{ML} \mathrm{T}^{-5}$

Q3.

The velocity of a train is $80.0 \mathrm{~km} / \mathrm{h}$, due west. One and a half hour later its velocity decreases to $65.0 \mathrm{~km} / \mathrm{h}$, due west. What is the train's average acceleration?
A) $10.0 \mathrm{~km} / \mathrm{h}^{2}$ due east
B) $10.0 \mathrm{~km} / \mathrm{h}^{2}$ due west
C) $43.3 \mathrm{~km} / \mathrm{h}^{2}$ due west
D) $43.3 \mathrm{~km} / \mathrm{h}^{2}$ due east
E) $53.3 \mathrm{~km} / \mathrm{h}^{2}$ due east

Q4.

A ball moves in a straight line along the x -axis and Figure 1 shows its velocity as a function of time t. What is the ball average velocity and average speed, respectively, over a period of 3.00 s.

Fig\#

A) $0.330 \mathrm{~m} / \mathrm{s}, 2.33 \mathrm{~m} / \mathrm{s}$

B) $2.33 \mathrm{~m} / \mathrm{s}, 0.330 \mathrm{~m} / \mathrm{s}$
C) $2.33 \mathrm{~m} / \mathrm{s}, 2.33 \mathrm{~m} / \mathrm{s}$
D) $1.66 \mathrm{~m} / \mathrm{s}, 2.33 \mathrm{~m} / \mathrm{s}$
E) $2.33 \mathrm{~m} / \mathrm{s}, 1.66 \mathrm{~m} / \mathrm{s}$

Q5.
The position of an object moving along the x-axis is given by $x=6.0+6.0 t-3.0 t^{2}$, where x is in meters and t in seconds. Which statement about this object is correct?

A) The object is momentarily at rest at $t=1.0 \mathrm{~s}$.

B) The object position is negative at $\mathrm{t}=0 \mathrm{~s}$.
C) The acceleration of the object is zero at $t=0 \mathrm{~s}$.
D) The acceleration of the object is positive at all times.
E) The object is momentarily at rest at $\mathrm{t}=2.0 \mathrm{~s}$.

Q6.

A rock is thrown vertically upward from ground level at time $t=0.0 \mathrm{~s}$. At $t=1.5 \mathrm{~s}$ it passes the top of a tall tower, and then 1.0 s later it reaches its maximum height. What is the height of the tower?
A) 26 m
B) 62 m
C) 36 m
D) 16 m
E) 20 m

Q7.

A man walks 50 m in a direction 37° north of east at $5.0 \mathrm{~m} / \mathrm{s}$, then 60 m south at $4.0 \mathrm{~m} / \mathrm{s}$. How long would it take him to get back to his starting point at $5.0 \mathrm{~m} / \mathrm{s}$ by the shortest path?

A) 10 s

B) 15 s
C) 20 s
D) 5.0 s
E) 3.5 s

Q8.
Vector \vec{A} has a magnitude of 35.0 m and makes an angle of 37.0° with the positive x axis.
Find a vector \vec{B} that is in the direction opposite to vector \vec{A} and is one fifth the magnitude of \vec{A}.
A) $-(5.59 \mathrm{~m}) \hat{i}-(4.21 \mathrm{~m}) \hat{j}$
B) $(5.59 \mathrm{~m}) \hat{i}+(4.21 \mathrm{~m}) \hat{j}$
C) $(0.798 \mathrm{~m}) \hat{i}-(0.602 \mathrm{~m}) \hat{j}$
D) $-(1.56 \mathrm{~m}) \hat{i}-(5.06 \mathrm{~m}) \hat{j}$
E) $-(0.798 \mathrm{~m}) \hat{i}+(0.602 \mathrm{~m}) \hat{j}$

Q9.

If $\vec{A}=2 \hat{i}+3 \hat{j}, \vec{B}=\hat{i}-\hat{j}$ and $\vec{C}=\hat{i}+\hat{j}$, find $(\vec{A} \times \vec{B}) \cdot \vec{C}$.
A) 0
B) -6
C) +6
D) $-3 \hat{k}$
E) $+2 \hat{i}$

Q10.

The scalar product of vectors \vec{A} and \vec{B} is 6.00 and the magnitude of their vector product is 9.00 . Find the angle between these two vectors.

A) 56.3°

B) 43.0°
C) 23.4°
D) 37.5°
E) 90.0°

Q11.
The position of a particle is given by $\vec{r}=\left(4 \mathrm{t}-\mathrm{t}^{2}\right) \hat{i}+\mathrm{t}^{3} \hat{j}$, where \vec{r} is in meters and t in seconds. Find the average acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) of the particle in the time interval between $\mathrm{t}=2 \mathrm{~s}$ and $\mathrm{t}=4 \mathrm{~s}$.

A) $-2 \hat{i}+18 \hat{j}$

B) $-4 \hat{i}-6 \hat{j}$
C) $-5 \hat{i}-10 \hat{j}$
D) $-7 \hat{i}-12 \hat{j}$
E) $-10 \hat{i}-6 \hat{j}$

Q12.
A projectile is thrown from the ground into the air with an initial speed v_{0}. Its velocity, 1.50 s after it was thrown, is $42.3 \mathrm{~m} / \mathrm{s}$ making an angle 30.4^{0} above the horizontal. Determine the initial velocity v_{0} of the projectile.
A) $51.3 \mathrm{~m} / \mathrm{s}$ at 44.7^{0} above the horizontal
B) $43.1 \mathrm{~m} / \mathrm{s}$ at 34.2^{0} above the horizontal
C) $21.6 \mathrm{~m} / \mathrm{s}$ at 49.2^{0} above the horizontal
D) $32.5 \mathrm{~m} / \mathrm{s}$ at 23.5^{0} above the horizontal
E) $12.2 \mathrm{~m} / \mathrm{s}$ at 54.5^{0} above the horizontal

Q13.
A 0.150 kg ball, attached to the end of a string, is revolving uniformly in a horizontal circle of radius 0.600 m . The ball makes 10.0 revolutions in 5.00 seconds. Calculate the centripetal acceleration of the ball?
A) $94.8 \mathrm{~m} / \mathrm{s}^{2}$
B) $25.7 \mathrm{~m} / \mathrm{s}^{2}$
C) $12.6 \mathrm{~m} / \mathrm{s}^{2}$
D) $9.81 \mathrm{~m} / \mathrm{s}^{2}$
E) zero

Q14.
A boat is to travel from point A to point B directly across a river. The water in the river flows with a velocity of $1.20 \mathrm{~m} / \mathrm{s}$ toward the west, as shown in Figure 3. If the speed of the boat in still water is $1.85 \mathrm{~m} / \mathrm{s}$, at what angle from the north must the boat head?

Fig\#

40.4^{0} east of north
B) 30.2^{0} west of north
C) 10.5^{0} east of north
D) 90.0^{0} west of north
E) 55.0^{0} west of north

Q15.
Which one of the curves shown in Figure 2 best represents the vertical component of the velocity v_{y} versus time t for a projectile fired at an angle of 45° above the horizontal?

Fig\#

A) AF
B) AB
C) OC
D) DE
E) AF

